File size: 10,204 Bytes
ba58eb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
029bab4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8baef5
029bab4
27d82ef
 
 
 
3bb59c3
27d82ef
 
3bb59c3
27d82ef
 
 
 
 
3bb59c3
27d82ef
3bb59c3
27d82ef
 
 
 
 
 
 
 
3bb59c3
27d82ef
 
3bb59c3
27d82ef
 
 
 
 
3bb59c3
27d82ef
3bb59c3
27d82ef
 
 
 
 
 
 
 
3bb59c3
27d82ef
 
 
 
 
 
 
 
3bb59c3
27d82ef
 
3bb59c3
 
 
 
d3607a8
 
 
 
 
3bb59c3
 
d3607a8
3bb59c3
d3607a8
3bb59c3
d3607a8
 
 
 
3bb59c3
d3607a8
3bb59c3
d3607a8
 
 
3bb59c3
d3607a8
 
3bb59c3
d3607a8
 
3bb59c3
d3607a8
 
 
 
 
 
 
 
 
3bb59c3
 
d3607a8
3bb59c3
d3607a8
 
 
 
 
 
 
 
 
 
 
 
 
 
3bb59c3
d8baef5
3bb59c3
d8baef5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bb59c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8baef5
3bb59c3
d8baef5
3bb59c3
 
d8baef5
 
 
 
 
 
 
 
3bb59c3
 
 
 
d8baef5
 
 
 
 
 
 
 
 
 
 
 
27d82ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
# import gradio as gr
# import torch
# from PIL import Image
# from model import CRM
# from inference import generate3d
# import numpy as np

# # Load model
# crm_path = "CRM.pth"  # Make sure the model is uploaded to the Space
# model = CRM(torch.load(crm_path, map_location="cpu"))
# model = model.to("cuda:0" if torch.cuda.is_available() else "cpu")

# def generate_3d(image_path, seed=1234, scale=5.5, step=30):
#     image = Image.open(image_path).convert("RGB")
#     np_img = np.array(image)
#     glb_path = generate3d(model, np_img, np_img, "cuda:0" if torch.cuda.is_available() else "cpu")
#     return glb_path

# iface = gr.Interface(
#     fn=generate_3d,
#     inputs=gr.Image(type="filepath"),
#     outputs=gr.Model3D(),
#     title="Convolutional Reconstruction Model (CRM)",
#     description="Upload an image to generate a 3D model."
# )

# iface.launch()


#############2nd################3
# import os
# import torch
# import gradio as gr
# from huggingface_hub import hf_hub_download
# from model import CRM  # Make sure this matches your model file structure

# # Define model details
# REPO_ID = "Mariam-Elz/CRM"  # Hugging Face model repo
# MODEL_FILES = {
#     "ccm-diffusion": "ccm-diffusion.pth",
#     "pixel-diffusion": "pixel-diffusion.pth",
#     "CRM": "CRM.pth"
# }
# DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

# # Download models from Hugging Face if not already present
# MODEL_DIR = "./models"
# os.makedirs(MODEL_DIR, exist_ok=True)

# for name, filename in MODEL_FILES.items():
#     model_path = os.path.join(MODEL_DIR, filename)
#     if not os.path.exists(model_path):
#         print(f"Downloading {filename}...")
#         hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir=MODEL_DIR)

# # Load the model
# print("Loading CRM Model...")
# model = CRM()
# model.load_state_dict(torch.load(os.path.join(MODEL_DIR, MODEL_FILES["CRM"]), map_location=DEVICE))
# model.to(DEVICE)
# model.eval()
# print("✅ Model Loaded Successfully!")

# # Define Gradio Interface
# def predict(input_image):
#     with torch.no_grad():
#         output = model(input_image.to(DEVICE))  # Modify based on model input format
#     return output.cpu()

# demo = gr.Interface(
#     fn=predict,
#     inputs=gr.Image(type="pil"),
#     outputs=gr.Image(type="pil"),
#     title="Convolutional Reconstruction Model (CRM)",
#     description="Upload an image to generate a reconstructed output."
# )

# if __name__ == "__main__":
#     demo.launch()
########################3rd-MAIN######################3

# import torch
# import gradio as gr
# import requests
# import os

# # Download model weights from Hugging Face model repo (if not already present)
# model_repo = "Mariam-Elz/CRM"  # Your Hugging Face model repo

# model_files = {
#     "ccm-diffusion.pth": "ccm-diffusion.pth",
#     "pixel-diffusion.pth": "pixel-diffusion.pth",
#     "CRM.pth": "CRM.pth",
# }

# os.makedirs("models", exist_ok=True)

# for filename, output_path in model_files.items():
#     file_path = f"models/{output_path}"
#     if not os.path.exists(file_path):
#         url = f"https://huggingface.co/{model_repo}/resolve/main/{filename}"
#         print(f"Downloading {filename}...")
#         response = requests.get(url)
#         with open(file_path, "wb") as f:
#             f.write(response.content)

# # Load model (This part depends on how the model is defined)
# device = "cuda" if torch.cuda.is_available() else "cpu"

# def load_model():
#     model_path = "models/CRM.pth"
#     model = torch.load(model_path, map_location=device)
#     model.eval()
#     return model

# model = load_model()

# # Define inference function
# def infer(image):
#     """Process input image and return a reconstructed image."""
#     with torch.no_grad():
#         # Assuming model expects a tensor input
#         image_tensor = torch.tensor(image).to(device)
#         output = model(image_tensor)
#         return output.cpu().numpy()

# # Create Gradio UI
# demo = gr.Interface(
#     fn=infer,
#     inputs=gr.Image(type="numpy"),
#     outputs=gr.Image(type="numpy"),
#     title="Convolutional Reconstruction Model",
#     description="Upload an image to get the reconstructed output."
# )

# if __name__ == "__main__":
#     demo.launch()


#################4th##################

# import torch
# import gradio as gr
# import requests
# import os

# # Define model repo
# model_repo = "Mariam-Elz/CRM"

# # Define model files and download paths
# model_files = {
#     "CRM.pth": "models/CRM.pth"
# }

# os.makedirs("models", exist_ok=True)

# # Download model files only if they don't exist
# for filename, output_path in model_files.items():
#     if not os.path.exists(output_path):
#         url = f"https://huggingface.co/{model_repo}/resolve/main/{filename}"
#         print(f"Downloading {filename}...")
#         response = requests.get(url)
#         with open(output_path, "wb") as f:
#             f.write(response.content)

# # Load model with low memory usage
# def load_model():
#     model_path = "models/CRM.pth"
#     model = torch.load(model_path, map_location="cpu")  # Load on CPU to reduce memory usage
#     model.eval()
#     return model

# model = load_model()

# # Define inference function
# def infer(image):
#     """Process input image and return a reconstructed image."""
#     with torch.no_grad():
#         image_tensor = torch.tensor(image).unsqueeze(0)  # Add batch dimension
#         image_tensor = image_tensor.to("cpu")  # Keep on CPU to save memory
#         output = model(image_tensor)
#         return output.squeeze(0).numpy()

# # Create Gradio UI
# demo = gr.Interface(
#     fn=infer,
#     inputs=gr.Image(type="numpy"),
#     outputs=gr.Image(type="numpy"),
#     title="Convolutional Reconstruction Model",
#     description="Upload an image to get the reconstructed output."
# )

# if __name__ == "__main__":
#     demo.launch()


# ##############5TH#################
# import torch
# import torch.nn as nn
# import gradio as gr
# import requests
# import os

# # Define model repo
# model_repo = "Mariam-Elz/CRM"

# # Define model files and download paths
# model_files = {
#     "CRM.pth": "models/CRM.pth"
# }

# os.makedirs("models", exist_ok=True)

# # Download model files only if they don't exist
# for filename, output_path in model_files.items():
#     if not os.path.exists(output_path):
#         url = f"https://huggingface.co/{model_repo}/resolve/main/{filename}"
#         print(f"Downloading {filename}...")
#         response = requests.get(url)
#         with open(output_path, "wb") as f:
#             f.write(response.content)

# # Define the model architecture (you MUST replace this with your actual model)
# class CRM_Model(nn.Module):
#     def __init__(self):
#         super(CRM_Model, self).__init__()
#         self.layer1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
#         self.relu = nn.ReLU()
#         self.layer2 = nn.Conv2d(64, 3, kernel_size=3, padding=1)

#     def forward(self, x):
#         x = self.layer1(x)
#         x = self.relu(x)
#         x = self.layer2(x)
#         return x

# # Load model with proper architecture
# def load_model():
#     model = CRM_Model()  # Instantiate the model architecture
#     model_path = "models/CRM.pth"
#     model.load_state_dict(torch.load(model_path, map_location="cpu"))  # Load weights
#     model.eval()  # Set to evaluation mode
#     return model

# model = load_model()

# # Define inference function
# def infer(image):
#     """Process input image and return a reconstructed image."""
#     with torch.no_grad():
#         image_tensor = torch.tensor(image).unsqueeze(0).permute(0, 3, 1, 2).float() / 255.0  # Convert to tensor
#         output = model(image_tensor)  # Run through model
#         output = output.squeeze(0).permute(1, 2, 0).numpy() * 255.0  # Convert back to image
#         return output.astype("uint8")

# # Create Gradio UI
# demo = gr.Interface(
#     fn=infer,
#     inputs=gr.Image(type="numpy"),
#     outputs=gr.Image(type="numpy"),
#     title="Convolutional Reconstruction Model",
#     description="Upload an image to get the reconstructed output."
# )

# if __name__ == "__main__":
#     demo.launch()


#############6th##################
import torch
import gradio as gr
import requests
import os
import numpy as np

# Hugging Face Model Repository
model_repo = "Mariam-Elz/CRM"

# Download Model Weights (Only CRM.pth to Save Memory)
model_path = "models/CRM.pth"
os.makedirs("models", exist_ok=True)

if not os.path.exists(model_path):
    url = f"https://huggingface.co/{model_repo}/resolve/main/CRM.pth"
    print(f"Downloading CRM.pth...")
    response = requests.get(url)
    with open(model_path, "wb") as f:
        f.write(response.content)

# Set Device (Use CPU to Reduce RAM Usage)
device = "cpu"

# Load Model Efficiently
def load_model():
    model = torch.load(model_path, map_location=device)
    if isinstance(model, torch.nn.Module):
        model.eval()  # Ensure model is in inference mode
    return model

# Load model only when needed (saves memory)
model = load_model()

# Define Inference Function with Memory Optimizations
def infer(image):
    """Process input image and return a reconstructed image."""
    with torch.no_grad():
        # Convert image to torch tensor & normalize (float16 to save RAM)
        image_tensor = torch.tensor(image, dtype=torch.float16).unsqueeze(0).permute(0, 3, 1, 2) / 255.0
        image_tensor = image_tensor.to(device)

        # Model Inference
        output = model(image_tensor)

        # Convert back to numpy image format
        output_image = output.squeeze(0).permute(1, 2, 0).cpu().numpy() * 255.0
        output_image = np.clip(output_image, 0, 255).astype(np.uint8)

        # Free Memory
        del image_tensor, output
        torch.cuda.empty_cache()

        return output_image

# Create Gradio UI
demo = gr.Interface(
    fn=infer,
    inputs=gr.Image(type="numpy"),
    outputs=gr.Image(type="numpy"),
    title="Optimized Convolutional Reconstruction Model",
    description="Upload an image to get the reconstructed output with reduced memory usage."
)

if __name__ == "__main__":
    demo.launch()