Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -79,37 +79,94 @@
|
|
79 |
# demo.launch()
|
80 |
########################3rd-MAIN######################3
|
81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
# import torch
|
83 |
# import gradio as gr
|
84 |
# import requests
|
85 |
# import os
|
86 |
|
87 |
-
# #
|
88 |
-
# model_repo = "Mariam-Elz/CRM"
|
89 |
|
|
|
90 |
# model_files = {
|
91 |
-
# "
|
92 |
-
# "pixel-diffusion.pth": "pixel-diffusion.pth",
|
93 |
-
# "CRM.pth": "CRM.pth",
|
94 |
# }
|
95 |
|
96 |
# os.makedirs("models", exist_ok=True)
|
97 |
|
|
|
98 |
# for filename, output_path in model_files.items():
|
99 |
-
#
|
100 |
-
# if not os.path.exists(file_path):
|
101 |
# url = f"https://huggingface.co/{model_repo}/resolve/main/{filename}"
|
102 |
# print(f"Downloading {filename}...")
|
103 |
# response = requests.get(url)
|
104 |
-
# with open(
|
105 |
# f.write(response.content)
|
106 |
|
107 |
-
# # Load model
|
108 |
-
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
109 |
-
|
110 |
# def load_model():
|
111 |
# model_path = "models/CRM.pth"
|
112 |
-
# model = torch.load(model_path, map_location=
|
113 |
# model.eval()
|
114 |
# return model
|
115 |
|
@@ -119,10 +176,10 @@
|
|
119 |
# def infer(image):
|
120 |
# """Process input image and return a reconstructed image."""
|
121 |
# with torch.no_grad():
|
122 |
-
#
|
123 |
-
# image_tensor =
|
124 |
# output = model(image_tensor)
|
125 |
-
# return output.
|
126 |
|
127 |
# # Create Gradio UI
|
128 |
# demo = gr.Interface(
|
@@ -137,9 +194,9 @@
|
|
137 |
# demo.launch()
|
138 |
|
139 |
|
140 |
-
#################
|
141 |
-
|
142 |
# import torch
|
|
|
143 |
# import gradio as gr
|
144 |
# import requests
|
145 |
# import os
|
@@ -163,11 +220,26 @@
|
|
163 |
# with open(output_path, "wb") as f:
|
164 |
# f.write(response.content)
|
165 |
|
166 |
-
# #
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
# def load_model():
|
|
|
168 |
# model_path = "models/CRM.pth"
|
169 |
-
# model
|
170 |
-
# model.eval()
|
171 |
# return model
|
172 |
|
173 |
# model = load_model()
|
@@ -176,10 +248,10 @@
|
|
176 |
# def infer(image):
|
177 |
# """Process input image and return a reconstructed image."""
|
178 |
# with torch.no_grad():
|
179 |
-
# image_tensor = torch.tensor(image).unsqueeze(0) #
|
180 |
-
#
|
181 |
-
# output =
|
182 |
-
# return output.
|
183 |
|
184 |
# # Create Gradio UI
|
185 |
# demo = gr.Interface(
|
@@ -192,75 +264,3 @@
|
|
192 |
|
193 |
# if __name__ == "__main__":
|
194 |
# demo.launch()
|
195 |
-
|
196 |
-
|
197 |
-
##############5TH#################
|
198 |
-
import torch
|
199 |
-
import torch.nn as nn
|
200 |
-
import gradio as gr
|
201 |
-
import requests
|
202 |
-
import os
|
203 |
-
|
204 |
-
# Define model repo
|
205 |
-
model_repo = "Mariam-Elz/CRM"
|
206 |
-
|
207 |
-
# Define model files and download paths
|
208 |
-
model_files = {
|
209 |
-
"CRM.pth": "models/CRM.pth"
|
210 |
-
}
|
211 |
-
|
212 |
-
os.makedirs("models", exist_ok=True)
|
213 |
-
|
214 |
-
# Download model files only if they don't exist
|
215 |
-
for filename, output_path in model_files.items():
|
216 |
-
if not os.path.exists(output_path):
|
217 |
-
url = f"https://huggingface.co/{model_repo}/resolve/main/{filename}"
|
218 |
-
print(f"Downloading {filename}...")
|
219 |
-
response = requests.get(url)
|
220 |
-
with open(output_path, "wb") as f:
|
221 |
-
f.write(response.content)
|
222 |
-
|
223 |
-
# Define the model architecture (you MUST replace this with your actual model)
|
224 |
-
class CRM_Model(nn.Module):
|
225 |
-
def __init__(self):
|
226 |
-
super(CRM_Model, self).__init__()
|
227 |
-
self.layer1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
|
228 |
-
self.relu = nn.ReLU()
|
229 |
-
self.layer2 = nn.Conv2d(64, 3, kernel_size=3, padding=1)
|
230 |
-
|
231 |
-
def forward(self, x):
|
232 |
-
x = self.layer1(x)
|
233 |
-
x = self.relu(x)
|
234 |
-
x = self.layer2(x)
|
235 |
-
return x
|
236 |
-
|
237 |
-
# Load model with proper architecture
|
238 |
-
def load_model():
|
239 |
-
model = CRM_Model() # Instantiate the model architecture
|
240 |
-
model_path = "models/CRM.pth"
|
241 |
-
model.load_state_dict(torch.load(model_path, map_location="cpu")) # Load weights
|
242 |
-
model.eval() # Set to evaluation mode
|
243 |
-
return model
|
244 |
-
|
245 |
-
model = load_model()
|
246 |
-
|
247 |
-
# Define inference function
|
248 |
-
def infer(image):
|
249 |
-
"""Process input image and return a reconstructed image."""
|
250 |
-
with torch.no_grad():
|
251 |
-
image_tensor = torch.tensor(image).unsqueeze(0).permute(0, 3, 1, 2).float() / 255.0 # Convert to tensor
|
252 |
-
output = model(image_tensor) # Run through model
|
253 |
-
output = output.squeeze(0).permute(1, 2, 0).numpy() * 255.0 # Convert back to image
|
254 |
-
return output.astype("uint8")
|
255 |
-
|
256 |
-
# Create Gradio UI
|
257 |
-
demo = gr.Interface(
|
258 |
-
fn=infer,
|
259 |
-
inputs=gr.Image(type="numpy"),
|
260 |
-
outputs=gr.Image(type="numpy"),
|
261 |
-
title="Convolutional Reconstruction Model",
|
262 |
-
description="Upload an image to get the reconstructed output."
|
263 |
-
)
|
264 |
-
|
265 |
-
if __name__ == "__main__":
|
266 |
-
demo.launch()
|
|
|
79 |
# demo.launch()
|
80 |
########################3rd-MAIN######################3
|
81 |
|
82 |
+
import torch
|
83 |
+
import gradio as gr
|
84 |
+
import requests
|
85 |
+
import os
|
86 |
+
|
87 |
+
# Download model weights from Hugging Face model repo (if not already present)
|
88 |
+
model_repo = "Mariam-Elz/CRM" # Your Hugging Face model repo
|
89 |
+
|
90 |
+
model_files = {
|
91 |
+
"ccm-diffusion.pth": "ccm-diffusion.pth",
|
92 |
+
"pixel-diffusion.pth": "pixel-diffusion.pth",
|
93 |
+
"CRM.pth": "CRM.pth",
|
94 |
+
}
|
95 |
+
|
96 |
+
os.makedirs("models", exist_ok=True)
|
97 |
+
|
98 |
+
for filename, output_path in model_files.items():
|
99 |
+
file_path = f"models/{output_path}"
|
100 |
+
if not os.path.exists(file_path):
|
101 |
+
url = f"https://huggingface.co/{model_repo}/resolve/main/{filename}"
|
102 |
+
print(f"Downloading {filename}...")
|
103 |
+
response = requests.get(url)
|
104 |
+
with open(file_path, "wb") as f:
|
105 |
+
f.write(response.content)
|
106 |
+
|
107 |
+
# Load model (This part depends on how the model is defined)
|
108 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
109 |
+
|
110 |
+
def load_model():
|
111 |
+
model_path = "models/CRM.pth"
|
112 |
+
model = torch.load(model_path, map_location=device)
|
113 |
+
model.eval()
|
114 |
+
return model
|
115 |
+
|
116 |
+
model = load_model()
|
117 |
+
|
118 |
+
# Define inference function
|
119 |
+
def infer(image):
|
120 |
+
"""Process input image and return a reconstructed image."""
|
121 |
+
with torch.no_grad():
|
122 |
+
# Assuming model expects a tensor input
|
123 |
+
image_tensor = torch.tensor(image).to(device)
|
124 |
+
output = model(image_tensor)
|
125 |
+
return output.cpu().numpy()
|
126 |
+
|
127 |
+
# Create Gradio UI
|
128 |
+
demo = gr.Interface(
|
129 |
+
fn=infer,
|
130 |
+
inputs=gr.Image(type="numpy"),
|
131 |
+
outputs=gr.Image(type="numpy"),
|
132 |
+
title="Convolutional Reconstruction Model",
|
133 |
+
description="Upload an image to get the reconstructed output."
|
134 |
+
)
|
135 |
+
|
136 |
+
if __name__ == "__main__":
|
137 |
+
demo.launch()
|
138 |
+
|
139 |
+
|
140 |
+
#################4th##################
|
141 |
+
|
142 |
# import torch
|
143 |
# import gradio as gr
|
144 |
# import requests
|
145 |
# import os
|
146 |
|
147 |
+
# # Define model repo
|
148 |
+
# model_repo = "Mariam-Elz/CRM"
|
149 |
|
150 |
+
# # Define model files and download paths
|
151 |
# model_files = {
|
152 |
+
# "CRM.pth": "models/CRM.pth"
|
|
|
|
|
153 |
# }
|
154 |
|
155 |
# os.makedirs("models", exist_ok=True)
|
156 |
|
157 |
+
# # Download model files only if they don't exist
|
158 |
# for filename, output_path in model_files.items():
|
159 |
+
# if not os.path.exists(output_path):
|
|
|
160 |
# url = f"https://huggingface.co/{model_repo}/resolve/main/{filename}"
|
161 |
# print(f"Downloading {filename}...")
|
162 |
# response = requests.get(url)
|
163 |
+
# with open(output_path, "wb") as f:
|
164 |
# f.write(response.content)
|
165 |
|
166 |
+
# # Load model with low memory usage
|
|
|
|
|
167 |
# def load_model():
|
168 |
# model_path = "models/CRM.pth"
|
169 |
+
# model = torch.load(model_path, map_location="cpu") # Load on CPU to reduce memory usage
|
170 |
# model.eval()
|
171 |
# return model
|
172 |
|
|
|
176 |
# def infer(image):
|
177 |
# """Process input image and return a reconstructed image."""
|
178 |
# with torch.no_grad():
|
179 |
+
# image_tensor = torch.tensor(image).unsqueeze(0) # Add batch dimension
|
180 |
+
# image_tensor = image_tensor.to("cpu") # Keep on CPU to save memory
|
181 |
# output = model(image_tensor)
|
182 |
+
# return output.squeeze(0).numpy()
|
183 |
|
184 |
# # Create Gradio UI
|
185 |
# demo = gr.Interface(
|
|
|
194 |
# demo.launch()
|
195 |
|
196 |
|
197 |
+
# ##############5TH#################
|
|
|
198 |
# import torch
|
199 |
+
# import torch.nn as nn
|
200 |
# import gradio as gr
|
201 |
# import requests
|
202 |
# import os
|
|
|
220 |
# with open(output_path, "wb") as f:
|
221 |
# f.write(response.content)
|
222 |
|
223 |
+
# # Define the model architecture (you MUST replace this with your actual model)
|
224 |
+
# class CRM_Model(nn.Module):
|
225 |
+
# def __init__(self):
|
226 |
+
# super(CRM_Model, self).__init__()
|
227 |
+
# self.layer1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
|
228 |
+
# self.relu = nn.ReLU()
|
229 |
+
# self.layer2 = nn.Conv2d(64, 3, kernel_size=3, padding=1)
|
230 |
+
|
231 |
+
# def forward(self, x):
|
232 |
+
# x = self.layer1(x)
|
233 |
+
# x = self.relu(x)
|
234 |
+
# x = self.layer2(x)
|
235 |
+
# return x
|
236 |
+
|
237 |
+
# # Load model with proper architecture
|
238 |
# def load_model():
|
239 |
+
# model = CRM_Model() # Instantiate the model architecture
|
240 |
# model_path = "models/CRM.pth"
|
241 |
+
# model.load_state_dict(torch.load(model_path, map_location="cpu")) # Load weights
|
242 |
+
# model.eval() # Set to evaluation mode
|
243 |
# return model
|
244 |
|
245 |
# model = load_model()
|
|
|
248 |
# def infer(image):
|
249 |
# """Process input image and return a reconstructed image."""
|
250 |
# with torch.no_grad():
|
251 |
+
# image_tensor = torch.tensor(image).unsqueeze(0).permute(0, 3, 1, 2).float() / 255.0 # Convert to tensor
|
252 |
+
# output = model(image_tensor) # Run through model
|
253 |
+
# output = output.squeeze(0).permute(1, 2, 0).numpy() * 255.0 # Convert back to image
|
254 |
+
# return output.astype("uint8")
|
255 |
|
256 |
# # Create Gradio UI
|
257 |
# demo = gr.Interface(
|
|
|
264 |
|
265 |
# if __name__ == "__main__":
|
266 |
# demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|