File size: 12,641 Bytes
3cf77dc 42d828e 6d401a4 58b0884 6d401a4 3cf77dc 6d401a4 58b0884 42d828e 58b0884 3cf77dc 42d828e 3cf77dc 6d401a4 42d828e 6d401a4 42d828e 3cf77dc 42d828e 3cf77dc 42d828e 3cf77dc 42d828e 3cf77dc 42d828e a517da1 58b0884 42d828e 58b0884 3cf77dc 58b0884 3cf77dc 42d828e 3cf77dc 58b0884 3cf77dc 42d828e 6d401a4 42d828e 58b0884 42d828e 6d401a4 58b0884 42d828e 6d401a4 42d828e 3a51c3e 42d828e 6d401a4 42d828e 6d401a4 42d828e 58b0884 3a51c3e 42d828e 3a51c3e 42d828e 58b0884 42d828e 58b0884 42d828e 6d401a4 42d828e 6d401a4 42d828e 58b0884 42d828e 58b0884 3a51c3e 42d828e 58b0884 3a51c3e 42d828e 58b0884 42d828e 58b0884 42d828e 58b0884 3cf77dc 42d828e 58b0884 42d828e 3a51c3e f6d1ff0 6d401a4 42d828e 6d401a4 42d828e 6d401a4 58b0884 42d828e 58b0884 42d828e 6d401a4 42d828e 3cf77dc 58b0884 3a51c3e 42d828e 58b0884 42d828e 58b0884 42d828e 58b0884 42d828e 58b0884 42d828e 58b0884 6d401a4 3448878 42d828e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import os
import streamlit as st
import tempfile
import torch
import torchaudio
import transformers
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
import plotly.express as px
import logging
import warnings
import whisper
import base64
import io
import asyncio
from concurrent.futures import ThreadPoolExecutor
import streamlit.components.v1 as components
# Suppress warnings
logging.getLogger("torch").setLevel(logging.ERROR)
logging.getLogger("transformers").setLevel(logging.ERROR)
warnings.filterwarnings("ignore")
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Device setup
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
st.write(f"Using device: {device}")
# Streamlit config
st.set_page_config(layout="wide", page_title="Voice Sentiment Analysis")
st.title("π Voice Sentiment Analysis")
st.markdown("Fast, accurate detection of emotions, sentiment, and sarcasm from voice or text.")
# Global model cache
@st.cache_resource
def load_models():
whisper_model = whisper.load_model("base")
emotion_tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
emotion_model = AutoModelForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
emotion_model = emotion_model.to(device).half()
emotion_classifier = pipeline("text-classification", model=emotion_model, tokenizer=emotion_tokenizer,
top_k=None, device=0 if torch.cuda.is_available() else -1)
sarcasm_tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-irony")
sarcasm_model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-irony")
sarcasm_model = sarcasm_model.to(device).half()
sarcasm_classifier = pipeline("text-classification", model=sarcasm_model, tokenizer=sarcasm_tokenizer,
device=0 if torch.cuda.is_available() else -1)
return whisper_model, emotion_classifier, sarcasm_classifier
whisper_model, emotion_classifier, sarcasm_classifier = load_models()
# Emotion detection
async def perform_emotion_detection(text):
if not text or len(text.strip()) < 3:
return {}, "neutral", {}, "NEUTRAL"
try:
results = emotion_classifier(text)[0]
emotions_dict = {r['label']: r['score'] for r in results}
filtered_emotions = {k: v for k, v in emotions_dict.items() if v > 0.01}
top_emotion = max(filtered_emotions, key=filtered_emotions.get)
positive_emotions = ["joy"]
negative_emotions = ["anger", "disgust", "fear", "sadness"]
sentiment = ("POSITIVE" if top_emotion in positive_emotions else
"NEGATIVE" if top_emotion in negative_emotions else "NEUTRAL")
emotion_map = {"joy": "π", "anger": "π‘", "disgust": "π€’", "fear": "π¨", "sadness": "π", "surprise": "π²"}
return emotions_dict, top_emotion, emotion_map, sentiment
except Exception as e:
st.error(f"Emotion detection failed: {str(e)}")
return {}, "neutral", {}, "NEUTRAL"
# Sarcasm detection
async def perform_sarcasm_detection(text):
if not text or len(text.strip()) < 3:
return False, 0.0
try:
result = sarcasm_classifier(text)[0]
is_sarcastic = result['label'] == "LABEL_1"
sarcasm_score = result['score'] if is_sarcastic else 1 - result['score']
return is_sarcastic, sarcasm_score
except Exception as e:
st.error(f"Sarcasm detection failed: {str(e)}")
return False, 0.0
# Audio validation
def validate_audio(audio_path):
try:
waveform, sample_rate = torchaudio.load(audio_path)
if waveform.abs().max() < 0.01:
st.warning("Audio volume too low.")
return False
if waveform.shape[1] / sample_rate < 1:
st.warning("Audio too short.")
return False
return True
except:
st.error("Invalid audio file.")
return False
# Audio transcription
@st.cache_data
def transcribe_audio(audio_path):
try:
waveform, sample_rate = torchaudio.load(audio_path)
if sample_rate != 16000:
resampler = torchaudio.transforms.Resample(sample_rate, 16000)
waveform = resampler(waveform)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
torchaudio.save(temp_file.name, waveform, 16000)
result = whisper_model.transcribe(temp_file.name, language="en")
os.remove(temp_file.name)
return result["text"].strip()
except Exception as e:
st.error(f"Transcription failed: {str(e)}")
return ""
# Process uploaded audio
def process_uploaded_audio(audio_file):
try:
ext = audio_file.name.split('.')[-1].lower()
if ext not in ['wav', 'mp3', 'ogg']:
st.error("Unsupported format. Use WAV, MP3, or OGG.")
return None
with tempfile.NamedTemporaryFile(suffix=f".{ext}", delete=False) as temp_file:
temp_file.write(audio_file.getvalue())
temp_file_path = temp_file.name
if not validate_audio(temp_file_path):
os.remove(temp_file_path)
return None
return temp_file_path
except Exception as e:
st.error(f"Error processing audio: {str(e)}")
return None
# Process base64 audio
def process_base64_audio(base64_data):
try:
base64_binary = base64_data.split(',')[1]
binary_data = base64.b64decode(base64_binary)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
temp_file.write(binary_data)
temp_file_path = temp_file.name
if not validate_audio(temp_file_path):
os.remove(temp_file_path)
return None
return temp_file_path
except Exception as e:
st.error(f"Error processing audio data: {str(e)}")
return None
# Custom audio recorder
def custom_audio_recorder():
audio_recorder_html = """
<script>
let recorder, audioBlob, isRecording = false;
const recordButton = document.getElementById('record-button');
const audioPlayback = document.getElementById('audio-playback');
const audioData = document.getElementById('audio-data');
async function startRecording() {
try {
const stream = await navigator.mediaDevices.getUserMedia({ audio: true });
recorder = new MediaRecorder(stream);
const chunks = [];
recorder.ondataavailable = e => chunks.push(e.data);
recorder.onstop = () => {
audioBlob = new Blob(chunks, { type: 'audio/wav' });
audioPlayback.src = URL.createObjectURL(audioBlob);
const reader = new FileReader();
reader.readAsDataURL(audioBlob);
reader.onloadend = () => {
audioData.value = reader.result;
window.parent.postMessage({type: "streamlit:setComponentValue", value: reader.result}, "*");
};
stream.getTracks().forEach(track => track.stop());
};
recorder.start();
isRecording = true;
recordButton.textContent = 'Stop Recording';
recordButton.classList.add('recording');
} catch (e) {
alert('Recording failed: ' + e.message);
}
}
function stopRecording() {
recorder.stop();
isRecording = false;
recordButton.textContent = 'Start Recording';
recordButton.classList.remove('recording');
}
document.getElementById('record-button').onclick = () => {
isRecording ? stopRecording() : startRecording();
};
</script>
<style>
.recorder-container { text-align: center; padding: 15px; }
.record-button { background: #ff4b4b; color: white; border: none; padding: 10px 20px; border-radius: 5px; cursor: pointer; }
.record-button.recording { background: #d32f2f; animation: pulse 1.5s infinite; }
@keyframes pulse { 0% { opacity: 1; } 50% { opacity: 0.7; } 100% { opacity: 1; } }
audio { margin-top: 10px; width: 100%; }
</style>
<div class="recorder-container">
<button id="record-button">Start Recording</button>
<audio id="audio-playback" controls></audio>
<input type="hidden" id="audio-data">
</div>
"""
return components.html(audio_recorder_html, height=150)
# Display results
def display_analysis_results(transcribed_text):
async def run_analyses():
emotion_task = perform_emotion_detection(transcribed_text)
sarcasm_task = perform_sarcasm_detection(transcribed_text)
return await asyncio.gather(emotion_task, sarcasm_task)
with st.spinner("Analyzing..."):
with ThreadPoolExecutor() as executor:
loop = asyncio.get_event_loop()
(emotions_dict, top_emotion, emotion_map, sentiment), (is_sarcastic, sarcasm_score) = loop.run_until_complete(run_analyses())
st.header("Results")
st.subheader("Transcribed Text")
st.text_area("Text", transcribed_text, height=100, disabled=True)
col1, col2 = st.columns([1, 2])
with col1:
st.subheader("Sentiment")
sentiment_icon = "π" if sentiment == "POSITIVE" else "π" if sentiment == "NEGATIVE" else "π"
st.markdown(f"{sentiment_icon} **{sentiment}**")
st.subheader("Sarcasm")
sarcasm_icon = "π" if is_sarcastic else "π"
st.markdown(f"{sarcasm_icon} **{'Detected' if is_sarcastic else 'Not Detected'}** (Score: {sarcasm_score:.2f})")
with col2:
st.subheader("Emotions")
if emotions_dict:
st.markdown(f"*Dominant:* {emotion_map.get(top_emotion, 'β')} **{top_emotion.capitalize()}** ({emotions_dict[top_emotion]:.2f})")
emotions = list(emotions_dict.keys())[:5]
scores = list(emotions_dict.values())[:5]
fig = px.bar(x=emotions, y=scores, labels={'x': 'Emotion', 'y': 'Score'}, color=emotions,
color_discrete_sequence=px.colors.qualitative.Set2)
fig.update_layout(yaxis_range=[0, 1], showlegend=False, height=300)
st.plotly_chart(fig, use_container_width=True)
else:
st.write("No emotions detected.")
with st.expander("Details"):
st.markdown("""
- **Speech**: Whisper-base (fast, ~10-15% WER)
- **Emotions**: DistilBERT (joy, anger, etc.)
- **Sarcasm**: RoBERTa (irony detection)
- **Tips**: Clear audio, minimal noise
""")
# Main app
def main():
if 'debug_info' not in st.session_state:
st.session_state.debug_info = []
tab1, tab2, tab3 = st.tabs(["π Upload Audio", "π Record Audio", "βοΈ Text Input"])
with tab1:
audio_file = st.file_uploader("Upload audio", type=["wav", "mp3", "ogg"])
if audio_file:
st.audio(audio_file.getvalue())
if st.button("Analyze", key="upload_analyze"):
progress = st.progress(0)
temp_path = process_uploaded_audio(audio_file)
if temp_path:
progress.progress(50)
text = transcribe_audio(temp_path)
if text:
progress.progress(100)
display_analysis_results(text)
else:
st.error("Transcription failed.")
os.remove(temp_path)
progress.empty()
with tab2:
st.markdown("Record audio using your microphone.")
audio_data = custom_audio_recorder()
if audio_data and st.button("Analyze", key="record_analyze"):
progress = st.progress(0)
temp_path = process_base64_audio(audio_data)
if temp_path:
progress.progress(50)
text = transcribe_audio(temp_path)
if text:
progress.progress(100)
display_analysis_results(text)
else:
st.error("Transcription failed.")
os.remove(temp_path)
progress.empty()
with tab3:
manual_text = st.text_area("Enter text:", placeholder="Type text to analyze...")
if st.button("Analyze", key="text_analyze") and manual_text:
display_analysis_results(manual_text)
if __name__ == "__main__":
main()
torch.cuda.empty_cache() |