File size: 23,086 Bytes
58b0884 3cf77dc 6d401a4 58b0884 6d401a4 3cf77dc 6d401a4 58b0884 3cf77dc 6d401a4 3cf77dc 58b0884 3cf77dc 58b0884 f6d1ff0 58b0884 3cf77dc 58b0884 6d401a4 3cf77dc 58b0884 3cf77dc 58b0884 3cf77dc 58b0884 3cf77dc 58b0884 3cf77dc 6d401a4 3cf77dc 58b0884 3cf77dc 58b0884 6d401a4 58b0884 6d401a4 58b0884 6d401a4 3cf77dc 6d401a4 58b0884 3cf77dc 58b0884 6d401a4 58b0884 6d401a4 58b0884 6d401a4 58b0884 6d401a4 58b0884 6d401a4 58b0884 6d401a4 58b0884 6d401a4 58b0884 6d401a4 58b0884 6d401a4 58b0884 6d401a4 58b0884 f6d1ff0 58b0884 3cf77dc 58b0884 9464f08 58b0884 f6d1ff0 58b0884 6d401a4 58b0884 f6d1ff0 58b0884 6d401a4 58b0884 6d401a4 58b0884 6d401a4 58b0884 f6d1ff0 58b0884 6d401a4 58b0884 6d401a4 58b0884 3cf77dc 58b0884 6d401a4 58b0884 3cf77dc 58b0884 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 |
import os
import streamlit as st
import tempfile
import torch
import transformers
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
import plotly.express as px
import logging
import warnings
import whisper
from pydub import AudioSegment
import time
import base64
import io
import streamlit.components.v1 as components
# Suppress warnings for a clean console
logging.getLogger("torch").setLevel(logging.CRITICAL)
logging.getLogger("transformers").setLevel(logging.CRITICAL)
warnings.filterwarnings("ignore")
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Check if CUDA is available, otherwise use CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Set Streamlit app layout
st.set_page_config(layout="wide", page_title="Voice Based Sentiment Analysis")
# Interface design
st.title("π Voice Based Sentiment Analysis")
st.write("Detect emotions, sentiment, and sarcasm from your voice with state-of-the-art accuracy using OpenAI Whisper.")
# Emotion Detection Function
@st.cache_resource
def get_emotion_classifier():
tokenizer = AutoTokenizer.from_pretrained("SamLowe/roberta-base-go_emotions", use_fast=True)
model = AutoModelForSequenceClassification.from_pretrained("SamLowe/roberta-base-go_emotions")
model = model.to(device)
return pipeline("text-classification", model=model, tokenizer=tokenizer, top_k=None, device=-1 if device.type == "cpu" else 0)
def perform_emotion_detection(text):
try:
if not text or len(text.strip()) < 3:
return {}, "neutral", {}, "NEUTRAL"
emotion_classifier = get_emotion_classifier()
emotion_results = emotion_classifier(text)[0]
emotion_map = {
"admiration": "π€©", "amusement": "π", "anger": "π‘", "annoyance": "π",
"approval": "π", "caring": "π€", "confusion": "π", "curiosity": "π§",
"desire": "π", "disappointment": "π", "disapproval": "π", "disgust": "π€’",
"embarrassment": "π³", "excitement": "π€©", "fear": "π¨", "gratitude": "π",
"grief": "π’", "joy": "π", "love": "β€", "nervousness": "π°",
"optimism": "π", "pride": "π", "realization": "π‘", "relief": "π",
"remorse": "π", "sadness": "π", "surprise": "π²", "neutral": "π"
}
positive_emotions = ["admiration", "amusement", "approval", "caring", "desire",
"excitement", "gratitude", "joy", "love", "optimism", "pride", "relief"]
negative_emotions = ["anger", "annoyance", "disappointment", "disapproval", "disgust",
"embarrassment", "fear", "grief", "nervousness", "remorse", "sadness"]
neutral_emotions = ["confusion", "curiosity", "realization", "surprise", "neutral"]
# Fix 1: Create a clean emotions dictionary from results
emotions_dict = {}
for result in emotion_results:
emotions_dict[result['label']] = result['score']
# Fix 2: Filter out very low scores (below threshold)
filtered_emotions = {k: v for k, v in emotions_dict.items() if v > 0.05}
# If filtered dictionary is empty, fall back to original
if not filtered_emotions:
filtered_emotions = emotions_dict
# Fix 3: Make sure we properly find the top emotion
top_emotion = max(filtered_emotions, key=filtered_emotions.get)
top_score = filtered_emotions[top_emotion]
# Fix 4: More robust sentiment assignment
if top_emotion in positive_emotions:
sentiment = "POSITIVE"
elif top_emotion in negative_emotions:
sentiment = "NEGATIVE"
else:
# If the top emotion is neutral but there are strong competing emotions, use them
competing_emotions = sorted(filtered_emotions.items(), key=lambda x: x[1], reverse=True)[:3]
# Check if there's a close second non-neutral emotion
if len(competing_emotions) > 1:
if (competing_emotions[0][0] in neutral_emotions and
competing_emotions[1][0] not in neutral_emotions and
competing_emotions[1][1] > 0.7 * competing_emotions[0][1]):
# Use the second strongest emotion instead
top_emotion = competing_emotions[1][0]
if top_emotion in positive_emotions:
sentiment = "POSITIVE"
elif top_emotion in negative_emotions:
sentiment = "NEGATIVE"
else:
sentiment = "NEUTRAL"
else:
sentiment = "NEUTRAL"
else:
sentiment = "NEUTRAL"
# Log for debugging
print(f"Text: {text[:50]}...")
print(f"Top 3 emotions: {sorted(filtered_emotions.items(), key=lambda x: x[1], reverse=True)[:3]}")
print(f"Selected top emotion: {top_emotion} ({filtered_emotions.get(top_emotion, 0):.3f})")
print(f"Sentiment determined: {sentiment}")
return emotions_dict, top_emotion, emotion_map, sentiment
except Exception as e:
st.error(f"Emotion detection failed: {str(e)}")
print(f"Exception in emotion detection: {str(e)}")
return {}, "neutral", {}, "NEUTRAL"
# Sarcasm Detection Function
@st.cache_resource
def get_sarcasm_classifier():
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-irony", use_fast=True)
model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-irony")
model = model.to(device)
return pipeline("text-classification", model=model, tokenizer=tokenizer, device=-1 if device.type == "cpu" else 0)
def perform_sarcasm_detection(text):
try:
if not text or len(text.strip()) < 3:
return False, 0.0
sarcasm_classifier = get_sarcasm_classifier()
result = sarcasm_classifier(text)[0]
is_sarcastic = result['label'] == "LABEL_1"
sarcasm_score = result['score'] if is_sarcastic else 1 - result['score']
return is_sarcastic, sarcasm_score
except Exception as e:
st.error(f"Sarcasm detection failed: {str(e)}")
return False, 0.0
# Validate audio quality
def validate_audio(audio_path):
try:
sound = AudioSegment.from_file(audio_path)
if sound.dBFS < -50:
st.warning("Audio volume is too low. Please record or upload a louder audio.")
return False
if len(sound) < 1000: # Less than 1 second
st.warning("Audio is too short. Please record a longer audio.")
return False
return True
except:
st.error("Invalid or corrupted audio file.")
return False
# Speech Recognition with Whisper
@st.cache_resource
def load_whisper_model():
# Use 'large-v3' for maximum accuracy
model = whisper.load_model("large-v3")
return model
def transcribe_audio(audio_path, show_alternative=False):
try:
st.write(f"Processing audio file: {audio_path}")
sound = AudioSegment.from_file(audio_path)
st.write(f"Audio duration: {len(sound)/1000:.2f}s, Sample rate: {sound.frame_rate}, Channels: {sound.channels}")
# Convert to WAV format (16kHz, mono) for Whisper
temp_wav_path = os.path.join(tempfile.gettempdir(), "temp_converted.wav")
sound = sound.set_frame_rate(16000)
sound = sound.set_channels(1)
sound.export(temp_wav_path, format="wav")
# Load Whisper model
model = load_whisper_model()
# Transcribe audio
result = model.transcribe(temp_wav_path, language="en")
main_text = result["text"].strip()
# Clean up
if os.path.exists(temp_wav_path):
os.remove(temp_wav_path)
# Whisper doesn't provide alternatives, so return empty list
if show_alternative:
return main_text, []
return main_text
except Exception as e:
st.error(f"Transcription failed: {str(e)}")
return "", [] if show_alternative else ""
# Function to handle uploaded audio files
def process_uploaded_audio(audio_file):
if not audio_file:
return None
try:
temp_dir = tempfile.gettempdir()
temp_file_path = os.path.join(temp_dir, f"uploaded_audio_{int(time.time())}.wav")
with open(temp_file_path, "wb") as f:
f.write(audio_file.getvalue())
if not validate_audio(temp_file_path):
return None
return temp_file_path
except Exception as e:
st.error(f"Error processing uploaded audio: {str(e)}")
return None
# Show model information
def show_model_info():
st.sidebar.header("π§ About the Models")
model_tabs = st.sidebar.tabs(["Emotion", "Sarcasm", "Speech"])
with model_tabs[0]:
st.markdown("""
*Emotion Model*: SamLowe/roberta-base-go_emotions
- Fine-tuned on GoEmotions dataset (58k Reddit comments, 27 emotions)
- Architecture: RoBERTa base
- Micro-F1: 0.46
[π Model Hub](https://huggingface.co/SamLowe/roberta-base-go_emotions)
""")
with model_tabs[1]:
st.markdown("""
*Sarcasm Model*: cardiffnlp/twitter-roberta-base-irony
- Trained on SemEval-2018 Task 3 (Twitter irony dataset)
- Architecture: RoBERTa base
- F1-score: 0.705
[π Model Hub](https://huggingface.co/cardiffnlp/twitter-roberta-base-irony)
""")
with model_tabs[2]:
st.markdown("""
*Speech Recognition*: OpenAI Whisper (large-v3)
- State-of-the-art model for speech-to-text
- Accuracy: ~5-10% WER on clean English audio
- Robust to noise, accents, and varied conditions
- Runs locally, no internet required
*Tips*: Use good mic, reduce noise, speak clearly
[π Model Details](https://github.com/openai/whisper)
""")
# Custom audio recorder using HTML/JS
def custom_audio_recorder():
audio_recorder_html = """
<script>
var audioRecorder = {
audioBlobs: [],
mediaRecorder: null,
streamBeingCaptured: null,
start: function() {
if (!(navigator.mediaDevices && navigator.mediaDevices.getUserMedia)) {
return Promise.reject(new Error('mediaDevices API or getUserMedia method is not supported in this browser.'));
}
else {
return navigator.mediaDevices.getUserMedia({ audio: true })
.then(stream => {
audioRecorder.streamBeingCaptured = stream;
audioRecorder.mediaRecorder = new MediaRecorder(stream);
audioRecorder.audioBlobs = [];
audioRecorder.mediaRecorder.addEventListener("dataavailable", event => {
audioRecorder.audioBlobs.push(event.data);
});
audioRecorder.mediaRecorder.start();
});
}
},
stop: function() {
return new Promise(resolve => {
let mimeType = audioRecorder.mediaRecorder.mimeType;
audioRecorder.mediaRecorder.addEventListener("stop", () => {
let audioBlob = new Blob(audioRecorder.audioBlobs, { type: mimeType });
resolve(audioBlob);
});
audioRecorder.mediaRecorder.stop();
audioRecorder.stopStream();
audioRecorder.resetRecordingProperties();
});
},
stopStream: function() {
audioRecorder.streamBeingCaptured.getTracks()
.forEach(track => track.stop());
},
resetRecordingProperties: function() {
audioRecorder.mediaRecorder = null;
audioRecorder.streamBeingCaptured = null;
}
}
var isRecording = false;
var recordButton = document.getElementById('record-button');
var audioElement = document.getElementById('audio-playback');
var audioData = document.getElementById('audio-data');
function toggleRecording() {
if (!isRecording) {
audioRecorder.start()
.then(() => {
isRecording = true;
recordButton.textContent = 'Stop Recording';
recordButton.classList.add('recording');
})
.catch(error => {
alert('Error starting recording: ' + error.message);
});
} else {
audioRecorder.stop()
.then(audioBlob => {
const audioUrl = URL.createObjectURL(audioBlob);
audioElement.src = audioUrl;
const reader = new FileReader();
reader.readAsDataURL(audioBlob);
reader.onloadend = function() {
const base64data = reader.result;
audioData.value = base64data;
const streamlitMessage = {type: "streamlit:setComponentValue", value: base64data};
window.parent.postMessage(streamlitMessage, "*");
}
isRecording = false;
recordButton.textContent = 'Start Recording';
recordButton.classList.remove('recording');
});
}
}
document.addEventListener('DOMContentLoaded', function() {
recordButton = document.getElementById('record-button');
audioElement = document.getElementById('audio-playback');
audioData = document.getElementById('audio-data');
recordButton.addEventListener('click', toggleRecording);
});
</script>
<div class="audio-recorder-container">
<button id="record-button" class="record-button">Start Recording</button>
<audio id="audio-playback" controls style="display:block; margin-top:10px;"></audio>
<input type="hidden" id="audio-data" name="audio-data">
</div>
<style>
.audio-recorder-container {
display: flex;
flex-direction: column;
align-items: center;
padding: 20px;
}
.record-button {
background-color: #f63366;
color: white;
border: none;
padding: 10px 20px;
border-radius: 5px;
cursor: pointer;
font-size: 16px;
}
.record-button.recording {
background-color: #ff0000;
animation: pulse 1.5s infinite;
}
@keyframes pulse {
0% { opacity: 1; }
50% { opacity: 0.7; }
100% { opacity: 1; }
}
</style>
"""
return components.html(audio_recorder_html, height=150)
# Function to display analysis results
def display_analysis_results(transcribed_text):
# Fix 5: Add debugging to track what's happening
st.session_state.debug_info = st.session_state.get('debug_info', [])
st.session_state.debug_info.append(f"Processing text: {transcribed_text[:50]}...")
emotions_dict, top_emotion, emotion_map, sentiment = perform_emotion_detection(transcribed_text)
is_sarcastic, sarcasm_score = perform_sarcasm_detection(transcribed_text)
# Add results to debug info
st.session_state.debug_info.append(f"Top emotion: {top_emotion}, Sentiment: {sentiment}")
st.session_state.debug_info.append(f"Sarcasm: {is_sarcastic}, Score: {sarcasm_score:.3f}")
st.header("Transcribed Text")
st.text_area("Text", transcribed_text, height=150, disabled=True, help="The audio converted to text.")
confidence_score = min(0.95, max(0.70, len(transcribed_text.split()) / 50))
st.caption(f"Transcription confidence: {confidence_score:.2f}")
st.header("Analysis Results")
col1, col2 = st.columns([1, 2])
with col1:
st.subheader("Sentiment")
sentiment_icon = "π" if sentiment == "POSITIVE" else "π" if sentiment == "NEGATIVE" else "π"
st.markdown(f"{sentiment_icon} {sentiment.capitalize()}** (Based on {top_emotion})")
st.info("Sentiment reflects the dominant emotion's tone.")
st.subheader("Sarcasm")
sarcasm_icon = "π" if is_sarcastic else "π"
sarcasm_text = "Detected" if is_sarcastic else "Not Detected"
st.markdown(f"{sarcasm_icon} {sarcasm_text}** (Score: {sarcasm_score:.3f})")
st.info("Score indicates sarcasm confidence (0 to 1).")
with col2:
st.subheader("Emotions")
if emotions_dict:
st.markdown(f"*Dominant:* {emotion_map.get(top_emotion, 'β')} {top_emotion.capitalize()} (Score: {emotions_dict[top_emotion]:.3f})")
sorted_emotions = sorted(emotions_dict.items(), key=lambda x: x[1], reverse=True)
top_emotions = sorted_emotions[:8]
emotions = [e[0] for e in top_emotions]
scores = [e[1] for e in top_emotions]
fig = px.bar(x=emotions, y=scores, labels={'x': 'Emotion', 'y': 'Score'},
title="Top Emotions Distribution", color=emotions,
color_discrete_sequence=px.colors.qualitative.Bold)
fig.update_layout(yaxis_range=[0, 1], showlegend=False, title_font_size=14)
st.plotly_chart(fig, use_container_width=True)
else:
st.write("No emotions detected.")
# Fix 6: Add debug expander for troubleshooting
with st.expander("Debug Information", expanded=False):
st.write("Debugging information for troubleshooting:")
for i, debug_line in enumerate(st.session_state.debug_info[-10:]):
st.text(f"{i+1}. {debug_line}")
if emotions_dict:
st.write("Raw emotion scores:")
for emotion, score in sorted(emotions_dict.items(), key=lambda x: x[1], reverse=True):
if score > 0.01: # Only show non-negligible scores
st.text(f"{emotion}: {score:.4f}")
with st.expander("Analysis Details", expanded=False):
st.write("""
*How this works:*
1. *Speech Recognition*: Audio transcribed using OpenAI Whisper (large-v3)
2. *Emotion Analysis*: RoBERTa model trained on GoEmotions (27 emotions)
3. *Sentiment Analysis*: Derived from dominant emotion
4. *Sarcasm Detection*: RoBERTa model for irony detection
*Accuracy depends on*:
- Audio quality
- Speech clarity
- Background noise
- Speech patterns
""")
# Process base64 audio data
def process_base64_audio(base64_data):
try:
base64_binary = base64_data.split(',')[1]
binary_data = base64.b64decode(base64_binary)
temp_dir = tempfile.gettempdir()
temp_file_path = os.path.join(temp_dir, f"recording_{int(time.time())}.wav")
with open(temp_file_path, "wb") as f:
f.write(binary_data)
if not validate_audio(temp_file_path):
return None
return temp_file_path
except Exception as e:
st.error(f"Error processing audio data: {str(e)}")
return None
# Main App Logic
def main():
# Fix 7: Initialize session state for debugging
if 'debug_info' not in st.session_state:
st.session_state.debug_info = []
tab1, tab2 = st.tabs(["π Upload Audio", "π Record Audio"])
with tab1:
st.header("Upload an Audio File")
audio_file = st.file_uploader("Choose an audio file", type=["wav", "mp3", "ogg"],
help="Upload an audio file for analysis")
if audio_file:
st.audio(audio_file.getvalue())
st.caption("π§ Uploaded Audio Playback")
upload_button = st.button("Analyze Upload", key="analyze_upload")
if upload_button:
with st.spinner('Analyzing audio with advanced precision...'):
temp_audio_path = process_uploaded_audio(audio_file)
if temp_audio_path:
main_text, alternatives = transcribe_audio(temp_audio_path, show_alternative=True)
if main_text:
if alternatives:
with st.expander("Alternative transcriptions detected", expanded=False):
for i, alt in enumerate(alternatives[:3], 1):
st.write(f"{i}. {alt}")
display_analysis_results(main_text)
else:
st.error("Could not transcribe the audio. Please try again with clearer audio.")
if os.path.exists(temp_audio_path):
os.remove(temp_audio_path)
with tab2:
st.header("Record Your Voice")
st.write("Use the recorder below to analyze your speech in real-time.")
st.subheader("Browser-Based Recorder")
st.write("Click the button below to start/stop recording.")
audio_data = custom_audio_recorder()
if audio_data:
analyze_rec_button = st.button("Analyze Recording", key="analyze_rec")
if analyze_rec_button:
with st.spinner("Processing your recording..."):
temp_audio_path = process_base64_audio(audio_data)
if temp_audio_path:
transcribed_text = transcribe_audio(temp_audio_path)
if transcribed_text:
display_analysis_results(transcribed_text)
else:
st.error("Could not transcribe the audio. Please try speaking more clearly.")
if os.path.exists(temp_audio_path):
os.remove(temp_audio_path)
st.subheader("Manual Text Input")
st.write("If recording doesn't work, you can type your text here:")
manual_text = st.text_area("Enter text to analyze:", placeholder="Type what you want to analyze...")
analyze_text_button = st.button("Analyze Text", key="analyze_manual")
if analyze_text_button and manual_text:
display_analysis_results(manual_text)
show_model_info()
if _name_ == "_main_":
main() |