MaroofTechSorcerer's picture
Update app.py
f6d1ff0 verified
raw
history blame
14.9 kB
import os
import streamlit as st
import tempfile
import torch
import transformers
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer, Wav2Vec2Processor, Wav2Vec2ForSequenceClassification
import plotly.express as px
import logging
import warnings
import whisper
from pydub import AudioSegment
import time
import numpy as np
import librosa
import subprocess
import pyaudio
import wave
import io
# Suppress warnings for a clean console
logging.getLogger("torch").setLevel(logging.CRITICAL)
logging.getLogger("transformers").setLevel(logging.CRITICAL)
warnings.filterwarnings("ignore")
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Check if CUDA is available, otherwise use CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Set Streamlit app layout
st.set_page_config(layout="wide", page_title="Advanced Voice Emotion Analyzer")
# Interface design
st.title("πŸŽ™οΈ Advanced Voice Emotion Analyzer")
st.write("Analyze all emotions from audio using hybrid ML models, ensuring accurate detection across 27 emotions.")
# Audio Preprocessing
def make_audio_scarier(audio_path, output_path):
try:
commands = [
f"ffmpeg -i {audio_path} -af 'asetrate=44100*0.8,aresample=44100' temp1.wav",
f"ffmpeg -i temp1.wav -af 'reverb=0.8:0.2:0.5:0.5:0.5:0.5' temp2.wav",
f"ffmpeg -i temp2.wav -af 'atempo=1.2' {output_path}"
]
for cmd in commands:
subprocess.run(cmd, shell=True, check=True)
for temp_file in ["temp1.wav", "temp2.wav"]:
if os.path.exists(temp_file):
os.remove(temp_file)
except Exception as e:
st.error(f"Audio processing failed: {str(e)}")
raise
# Audio Feature Extraction
def extract_audio_features(audio_path):
try:
y, sr = librosa.load(audio_path, sr=16000)
pitch_mean = np.mean(librosa.piptrack(y=y, sr=sr)[0][librosa.piptrack(y=y, sr=sr)[0] > 0]) if np.any(librosa.piptrack(y=y, sr=sr)[0] > 0) else 0
energy_mean = np.mean(librosa.feature.rms(y=y))
zcr_mean = np.mean(librosa.feature.zero_crossing_rate(y))
return {"pitch_mean": pitch_mean, "energy_mean": energy_mean, "zcr_mean": zcr_mean}
except Exception as e:
st.error(f"Audio feature extraction failed: {str(e)}")
return {}
# Audio Emotion Classification with Wav2Vec2
@st.cache_resource
def get_audio_emotion_classifier():
processor = Wav2Vec2Processor.from_pretrained("superb/wav2vec2-base-superb-er")
model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-er")
model = model.to(device)
return processor, model
def perform_audio_emotion_detection(audio_path):
try:
processor, model = get_audio_emotion_classifier()
waveform, sample_rate = librosa.load(audio_path, sr=16000)
inputs = processor(waveform, sampling_rate=16000, return_tensors="pt", padding=True)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
logits = model(**inputs).logits
scores = torch.softmax(logits, dim=1).detach().cpu().numpy()[0]
audio_emotions = ["neutral", "happy", "sad", "angry", "fearful", "surprise", "disgust"]
emotion_dict = {emotion: float(scores[i]) for i, emotion in enumerate(audio_emotions)}
top_emotion = audio_emotions[np.argmax(scores)]
# Boost emotions for audio characteristics
features = extract_audio_features(audio_path)
if features.get("pitch_mean", 0) < 200 and features.get("energy_mean", 0) > 0.1 and features.get("zcr_mean", 0) > 0.1:
emotion_dict["fearful"] = min(1.0, emotion_dict.get("fearful", 0) + 0.3)
top_emotion = "fearful" if emotion_dict["fearful"] > emotion_dict[top_emotion] else top_emotion
elif features.get("energy_mean", 0) > 0.2:
emotion_dict["angry"] = min(1.0, emotion_dict.get("angry", 0) + 0.2)
top_emotion = "angry" if emotion_dict["angry"] > emotion_dict[top_emotion] else top_emotion
return emotion_dict, top_emotion
except Exception as e:
st.error(f"Audio emotion detection failed: {str(e)}")
return {}, "unknown"
# Text Emotion Classification with RoBERTa
@st.cache_resource
def get_text_emotion_classifier():
tokenizer = AutoTokenizer.from_pretrained("SamLowe/roberta-base-go_emotions", use_fast=True)
model = AutoModelForSequenceClassification.from_pretrained("SamLowe/roberta-base-go_emotions")
model = model.to(device)
return pipeline("text-classification", model=model, tokenizer=tokenizer, top_k=None, device=-1 if device.type == "cpu" else 0)
def perform_text_emotion_detection(text):
try:
classifier = get_text_emotion_classifier()
results = classifier(text)[0]
emotions = ["admiration", "amusement", "anger", "annoyance", "approval", "caring", "confusion",
"curiosity", "desire", "disappointment", "disapproval", "disgust", "embarrassment",
"excitement", "fear", "gratitude", "grief", "joy", "love", "nervousness", "optimism",
"pride", "realization", "relief", "remorse", "sadness", "surprise", "neutral"]
emotions_dict = {result['label']: result['score'] for result in results if result['label'] in emotions}
top_emotion = max(emotions_dict, key=emotions_dict.get)
return emotions_dict, top_emotion
except Exception as e:
st.error(f"Text emotion detection failed: {str(e)}")
return {}, "unknown"
# Sarcasm Detection
@st.cache_resource
def get_sarcasm_classifier():
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-irony", use_fast=True)
model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-irony")
model = model.to(device)
return pipeline("text-classification", model=model, tokenizer=tokenizer, device=-1 if device.type == "cpu" else 0)
def perform_sarcasm_detection(text):
try:
classifier = get_sarcasm_classifier()
result = classifier(text)[0]
is_sarcastic = result['label'] == "LABEL_1"
sarcasm_score = result['score'] if is_sarcastic else 1 - result['score']
return is_sarcastic, sarcasm_score
except Exception as e:
st.error(f"Sarcasm detection failed: {str(e)}")
return False, 0.0
# Validate Audio
def validate_audio(audio_path):
try:
sound = AudioSegment.from_file(audio_path)
if sound.dBFS < -50 or len(sound) < 1000:
st.warning("Audio volume too low or too short. Please use a louder, longer audio.")
return False
return True
except Exception:
st.error("Invalid or corrupted audio file.")
return False
# Speech Recognition with Whisper
@st.cache_resource
def load_whisper_model():
return whisper.load_model("large-v3")
def transcribe_audio(audio_path):
try:
sound = AudioSegment.from_file(audio_path)
temp_wav_path = os.path.join(tempfile.gettempdir(), "temp_converted.wav")
sound = sound.set_frame_rate(16000).set_channels(1)
sound.export(temp_wav_path, format="wav")
model = load_whisper_model()
result = model.transcribe(temp_wav_path, language="en")
os.remove(temp_wav_path)
return result["text"].strip()
except Exception as e:
st.error(f"Transcription failed: {str(e)}")
return ""
# Python Audio Recording
def record_audio():
CHUNK = 1024
FORMAT = pyaudio.paInt16
CHANNELS = 1
RATE = 16000
RECORD_SECONDS = st.slider("Recording duration (seconds)", 1, 30, 5)
p = pyaudio.PyAudio()
stream = p.open(format=FORMAT, channels=CHANNELS, rate=RATE, input=True, frames_per_buffer=CHUNK)
if st.button("Start Recording"):
st.write("Recording...")
frames = []
for _ in range(0, int(RATE / CHUNK * RECORD_SECONDS)):
data = stream.read(CHUNK)
frames.append(data)
st.write("Recording finished.")
stream.stop_stream()
stream.close()
p.terminate()
temp_file_path = os.path.join(tempfile.gettempdir(), f"recorded_audio_{int(time.time())}.wav")
wf = wave.open(temp_file_path, 'wb')
wf.setnchannels(CHANNELS)
wf.setsampwidth(p.get_sample_size(FORMAT))
wf.setframerate(RATE)
wf.writeframes(b''.join(frames))
wf.close()
return temp_file_path
return None
# Process Audio Files
def process_audio_file(audio_data):
temp_dir = tempfile.gettempdir()
temp_file_path = os.path.join(temp_dir, f"audio_{int(time.time())}.wav")
with open(temp_file_path, "wb") as f:
if isinstance(audio_data, str):
with open(audio_data, "rb") as f_audio:
f.write(f_audio.read())
else:
f.write(audio_data.getvalue())
if not validate_audio(temp_file_path):
return None
return temp_file_path
# Display Results
def display_analysis_results(audio_path):
st.header("Audio Analysis")
st.audio(audio_path)
# Preprocess audio
processed_audio_path = os.path.join(tempfile.gettempdir(), f"processed_{int(time.time())}.wav")
make_audio_scarier(audio_path, processed_audio_path)
# Audio emotion detection
audio_emotions, audio_top_emotion = perform_audio_emotion_detection(processed_audio_path)
st.subheader("Audio-Based Emotion")
st.write(f"**Dominant Emotion:** {audio_top_emotion} (Score: {audio_emotions.get(audio_top_emotion, 0):.3f})")
# Transcription and text emotion detection
transcribed_text = transcribe_audio(processed_audio_path)
st.subheader("Transcribed Text")
st.text_area("Text", transcribed_text, height=100, disabled=True)
if transcribed_text:
text_emotions, text_top_emotion = perform_text_emotion_detection(transcribed_text)
st.write(f"**Text-Based Dominant Emotion:** {text_top_emotion} (Score: {text_emotions.get(text_top_emotion, 0):.3f})")
# Combine emotions (prioritize audio, map to 27 emotions)
emotion_map = {
"neutral": "neutral", "happy": "joy", "sad": "sadness", "angry": "anger",
"fearful": "fear", "surprise": "surprise", "disgust": "disgust"
}
combined_emotions = {emotion: 0 for emotion in ["admiration", "amusement", "anger", "annoyance", "approval", "caring",
"confusion", "curiosity", "desire", "disappointment", "disapproval",
"disgust", "embarrassment", "excitement", "fear", "gratitude",
"grief", "joy", "love", "nervousness", "optimism", "pride",
"realization", "relief", "remorse", "sadness", "surprise", "neutral"]}
for audio_emotion, score in audio_emotions.items():
mapped_emotion = emotion_map.get(audio_emotion, "neutral")
combined_emotions[mapped_emotion] = max(combined_emotions[mapped_emotion], score * 0.7)
if transcribed_text:
for text_emotion, score in text_emotions.items():
combined_emotions[text_emotion] = combined_emotions.get(text_emotion, 0) + score * 0.3
top_emotion = max(combined_emotions, key=combined_emotions.get)
sentiment = "POSITIVE" if top_emotion in ["admiration", "amusement", "approval", "caring", "desire", "excitement",
"gratitude", "joy", "love", "optimism", "pride", "relief"] else "NEGATIVE" if top_emotion in ["anger", "annoyance", "disappointment", "disapproval", "disgust", "embarrassment", "fear", "grief", "nervousness", "remorse", "sadness"] else "NEUTRAL"
# Sarcasm detection
is_sarcastic, sarcasm_score = perform_sarcasm_detection(transcribed_text) if transcribed_text else (False, 0.0)
# Display results
col1, col2 = st.columns([1, 2])
with col1:
st.subheader("Sentiment")
sentiment_icon = "πŸ‘" if sentiment == "POSITIVE" else "πŸ‘Ž" if sentiment == "NEGATIVE" else "😐"
st.markdown(f"**{sentiment_icon} {sentiment.capitalize()}** (Based on {top_emotion})")
st.subheader("Sarcasm")
sarcasm_icon = "😏" if is_sarcastic else "😐"
st.markdown(f"**{sarcasm_icon} {'Detected' if is_sarcastic else 'Not Detected'}** (Score: {sarcasm_score:.3f})")
with col2:
st.subheader("Emotion Distribution")
sorted_emotions = sorted(combined_emotions.items(), key=lambda x: x[1], reverse=True)[:10]
emotions, scores = zip(*sorted_emotions)
fig = px.bar(x=list(emotions), y=list(scores), labels={'x': 'Emotion', 'y': 'Score'},
title="Top Emotion Scores", color=list(emotions),
color_discrete_sequence=px.colors.qualitative.Bold)
fig.update_layout(yaxis_range=[0, 1], showlegend=False, title_font_size=14)
st.plotly_chart(fig, use_container_width=True)
with st.expander("Details"):
st.write(f"**Audio Features:** {extract_audio_features(processed_audio_path)}")
st.write("""
**How it works:**
- Audio Emotion: Wav2Vec2 detects 7 emotions from audio.
- Transcription: Whisper converts audio to text.
- Text Emotion: RoBERTa refines 27 emotions from text.
- Sarcasm: Analyzes text for irony.
**Accuracy depends on:** Audio quality, clarity, and noise.
""")
# Clean up
for path in [audio_path, processed_audio_path]:
if os.path.exists(path):
os.remove(path)
# Main App Logic
def main():
tab1, tab2 = st.tabs(["πŸ“ Upload Audio", "πŸŽ™οΈ Record Audio"])
with tab1:
st.header("Upload Audio File")
audio_file = st.file_uploader("Upload audio (wav, mp3, ogg)", type=["wav", "mp3", "ogg"])
if audio_file:
temp_audio_path = process_audio_file(audio_file)
if temp_audio_path:
if st.button("Analyze Upload"):
with st.spinner("Analyzing..."):
display_analysis_results(temp_audio_path)
with tab2:
st.header("Record Your Voice")
st.write("Record audio to analyze emotions in real-time.")
temp_audio_path = record_audio()
if temp_audio_path:
if st.button("Analyze Recording"):
with st.spinner("Processing..."):
display_analysis_results(temp_audio_path)
st.sidebar.header("About")
st.sidebar.write("""
**Models Used:**
- Audio: superb/wav2vec2-base-superb-er (7 emotions)
- Text: SamLowe/roberta-base-go_emotions (27 emotions)
- Sarcasm: cardiffnlp/twitter-roberta-base-irony
- Speech: OpenAI Whisper (large-v3)
""")
if __name__ == "__main__":
main()