MathWizard1729's picture
Update app.py
41bdb8e verified
import streamlit as st
import boto3
from langchain_community.document_loaders import PyPDFLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_aws import BedrockEmbeddings
# --- CHANGED: Import Qdrant instead of Chroma ---
from langchain_qdrant import Qdrant
# --- Optional: If you need direct Qdrant client interaction or for advanced setups ---
# from qdrant_client import QdrantClient, models
from langchain_aws import ChatBedrock
from langchain.prompts import ChatPromptTemplate
from langchain.schema import StrOutputParser
from langchain.schema.runnable import RunnablePassthrough
import os
from dotenv import load_dotenv # Import load_dotenv
# --- Load Environment Variables ---
load_dotenv() # This loads variables from .env file
# --- Streamlit UI Setup (MUST BE THE FIRST STREAMLIT COMMAND) ---
st.set_page_config(
page_title="Math Research Paper RAG Bot",
page_icon="πŸ“š",
layout="wide"
)
st.title("πŸ“š Math Research Paper RAG Chatbot")
st.markdown(
"""
Upload a mathematical research paper (PDF) and ask questions about its content.
This bot uses Amazon Bedrock (Claude 3 Sonnet for reasoning, Titan Embeddings for vectors)
and **QdrantDB** for Retrieval-Augmented Generation.
**Note:** This application requires AWS credentials (`AWS_ACCESS_KEY_ID`, `AWS_SECRET_ACCESS_KEY`)
and region (`AWS_REGION`) to be set up in a `.env` file or environment variables.
The Qdrant vector store is **in-memory** and will be reset on app restart.
"""
)
# --- Configuration ---
# Set AWS region (adjust if needed, loaded from .env or env var)
AWS_REGION = os.getenv("AWS_REGION")
if not AWS_REGION:
st.error("AWS_REGION not found in environment variables or .env file. Please set it.")
st.stop()
# Bedrock model IDs
EMBEDDING_MODEL_ID = "amazon.titan-embed-text-v1"
LLM_MODEL_ID = "anthropic.claude-3-sonnet-20240229-v1:0"
# --- Qdrant Specific Configuration ---
QDRANT_COLLECTION_NAME = "math_research_papers_collection"
EMBEDDING_DIMENSION = 1536 # Titan Text Embeddings output 1536-dimensional vectors
# --- Initialize Bedrock Client (once) ---
@st.cache_resource
def get_bedrock_client():
"""Initializes and returns a boto3 Bedrock client.
Returns: Tuple (boto3_client, success_bool, error_message_str or None)
"""
try:
client = boto3.client(
service_name="bedrock-runtime",
region_name=AWS_REGION
)
return client, True, None # Success: client, True, no error message
except Exception as e:
return None, False, str(e) # Failure: None, False, error message
# Get the client and check its status
bedrock_client, bedrock_success, bedrock_error_msg = get_bedrock_client()
if not bedrock_success:
st.error(f"Error connecting to AWS Bedrock. Please check your AWS credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) and region (AWS_REGION) in your .env file or environment variables. Error: {bedrock_error_msg}")
st.stop() # Stop execution if Bedrock client cannot be initialized
else:
st.success(f"Successfully connected to AWS Bedrock in {AWS_REGION}!")
# --- LangChain Components ---
@st.cache_resource
def get_embeddings_model(_client): # Prepend underscore to tell Streamlit not to hash
"""Returns the BedrockEmbeddings model."""
return BedrockEmbeddings(client=_client, model_id=EMBEDDING_MODEL_ID)
@st.cache_resource
def get_llm_model(_client): # Prepend underscore to tell Streamlit not to hash
"""Returns the Bedrock LLM model for Claude 3 Sonnet."""
return ChatBedrock(
client=_client,
model_id=LLM_MODEL_ID,
streaming=False,
temperature=0.1,
model_kwargs={"max_tokens": 4000}
)
# --- PDF Processing and Vector Store Creation ---
def create_vector_store(pdf_file_path):
"""
Loads PDF, chunks it contextually for mathematical papers,
creates embeddings, and stores them in QdrantDB (in-memory).
"""
with st.spinner("Loading PDF and creating vector store..."):
# 1. Load PDF
loader = PyPDFLoader(pdf_file_path)
pages = loader.load_and_split()
st.info(f"Loaded {len(pages)} pages from the PDF.")
# 2. Contextual Chunking for Mathematical Papers
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1500, # Increased chunk size for math papers
chunk_overlap=150, # Generous overlap to maintain context
separators=[
"\n\n", # Prefer splitting by paragraphs
"\n", # Then by newlines (might break equations but less likely than fixed char)
" ", # Then by spaces
"", # Fallback
],
length_function=len,
is_separator_regex=False,
)
chunks = text_splitter.split_documents(pages)
st.info(f"Split PDF into {len(chunks)} chunks.")
# 3. Create Embeddings and QdrantDB
embeddings = get_embeddings_model(bedrock_client)
# --- CHANGED: Qdrant vector store creation ---
vector_store = Qdrant.from_documents(
documents=chunks,
embedding=embeddings,
location=":memory:", # Use in-memory Qdrant instance
collection_name=QDRANT_COLLECTION_NAME,
# For persistent Qdrant (requires a running Qdrant server):
# url="http://localhost:6333", # Or your Qdrant Cloud URL
# api_key="YOUR_QDRANT_CLOUD_API_KEY", # Only for Qdrant Cloud
# prefer_grpc=True # Set to True if using gRPC for Qdrant Cloud
# force_recreate=True # Use with caution: deletes existing collection
)
# Note: LangChain's Qdrant integration will automatically create the collection
# if it doesn't exist, inferring vector_size from embeddings.
st.success("Vector store created and ready!")
return vector_store
# --- RAG Chain Construction ---
def get_rag_chain(vector_store):
"""Constructs the RAG chain using LCEL."""
retriever = vector_store.as_retriever(search_kwargs={"k": 5}) # Retrieve top 5 relevant chunks
llm = get_llm_model(bedrock_client)
# Prompt Template optimized for mathematical research papers
prompt_template = ChatPromptTemplate.from_messages(
[
("system",
"You are an expert AI assistant specialized in analyzing and explaining mathematical research papers. "
"Your goal is to provide precise, accurate, and concise answers based *only* on the provided context from the research paper. "
"When answering, focus on definitions, theorems, proofs, key mathematical concepts, and experimental results. "
"If the user asks about a mathematical notation, try to explain its meaning from the context. "
"If the answer is not found in the context, explicitly state that you cannot find the information within the provided document. "
"Do not invent information or make assumptions outside the given text.\n\n"
"Context:\n{context}"),
("user", "{question}"),
]
)
rag_chain = (
{"context": retriever, "question": RunnablePassthrough()}
| prompt_template
| llm
| StrOutputParser()
)
return rag_chain
# --- Streamlit UI Main Logic ---
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Initialize vector store and RAG chain
if "vector_store" not in st.session_state:
st.session_state.vector_store = None
if "rag_chain" not in st.session_state:
st.session_state.rag_chain = None
if "pdf_uploaded" not in st.session_state:
st.session_state.pdf_uploaded = False
# Sidebar for PDF Upload
with st.sidebar:
st.header("Upload PDF")
uploaded_file = st.file_uploader(
"Choose a PDF file",
type="pdf",
accept_multiple_files=False,
key="pdf_uploader"
)
if uploaded_file and not st.session_state.pdf_uploaded:
# Save the uploaded file temporarily
with open("temp_doc.pdf", "wb") as f:
f.write(uploaded_file.getbuffer())
st.session_state.vector_store = create_vector_store("temp_doc.pdf")
st.session_state.rag_chain = get_rag_chain(st.session_state.vector_store)
st.session_state.pdf_uploaded = True
st.success("PDF processed successfully! You can now ask questions.")
# Clean up temporary file
os.remove("temp_doc.pdf")
elif st.session_state.pdf_uploaded:
st.info("PDF already processed. Ready for questions!")
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Accept user input
if prompt := st.chat_input("Ask a question about the paper..."):
if not st.session_state.pdf_uploaded:
st.warning("Please upload a PDF first to start asking questions.")
else:
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
# Get response from RAG chain
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
try:
full_response = st.session_state.rag_chain.invoke(prompt)
st.markdown(full_response, unsafe_allow_html=True)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": full_response})
except Exception as e:
st.error(f"An error occurred during response generation: {e}")
st.warning("Please try again or check your AWS Bedrock access permissions.")
# Optional: Clear chat and uploaded PDF
if st.session_state.pdf_uploaded:
if st.sidebar.button("Clear Chat and Upload New PDF"):
st.session_state.messages = []
st.session_state.vector_store = None
st.session_state.rag_chain = None
st.session_state.pdf_uploaded = False
st.cache_resource.clear() # Clear streamlit caches for a clean slate
st.rerun()