Spaces:
Running
Running
File size: 5,031 Bytes
df30043 686ef17 df30043 686ef17 e4611cf 5b73cc5 df30043 6c13452 df30043 15d82cf e4611cf 5b73cc5 e4611cf 5b73cc5 121a196 488a981 686ef17 df30043 5b73cc5 686ef17 5b73cc5 686ef17 e4611cf df30043 686ef17 5b73cc5 df30043 686ef17 5b73cc5 686ef17 e4611cf 488a981 e4611cf 5b73cc5 df30043 686ef17 df30043 686ef17 df30043 5b73cc5 df30043 e4611cf df30043 5b73cc5 df30043 488a981 686ef17 df30043 686ef17 df30043 686ef17 df30043 686ef17 e4611cf 5b73cc5 488a981 5b73cc5 e4611cf 5b73cc5 e4611cf 686ef17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer
from PIL import Image
import requests
import torch
from threading import Thread
import gradio as gr
from gradio import FileData
import time
import spaces
import fitz # PyMuPDF
import io
import numpy as np
ckpt = "Daemontatox/DocumentCogito"
model = MllamaForConditionalGeneration.from_pretrained(ckpt,
torch_dtype=torch.bfloat16).to("cuda")
processor = AutoProcessor.from_pretrained(ckpt)
def process_pdf_file(file_path):
"""Convert PDF to images and extract text using PyMuPDF."""
doc = fitz.open(file_path)
images = []
text = ""
for page in doc:
# Extract text
text += page.get_text() + "\n"
# Convert page to image
pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72)) # 300 DPI
img_data = pix.tobytes("png")
img = Image.open(io.BytesIO(img_data))
images.append(img.convert("RGB"))
doc.close()
return images, text
@spaces.GPU()
def bot_streaming(message, history, max_new_tokens=2048):
txt = message["text"]
ext_buffer = f"{txt}"
messages = []
images = []
# Process history
for i, msg in enumerate(history):
if isinstance(msg[0], tuple):
messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]})
messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
images.append(Image.open(msg[0][0]).convert("RGB"))
elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
pass
elif isinstance(history[i-1][0], str) and isinstance(msg[0], str):
messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
# Process current message
if len(message["files"]) == 1:
file_data = message["files"][0]
file_path = file_data["path"] if isinstance(file_data, dict) else file_data
# Check if file is PDF
if file_path.lower().endswith('.pdf'):
# Process PDF
pdf_images, pdf_text = process_pdf_file(file_path)
images.extend(pdf_images)
txt = f"{txt}\nExtracted text from PDF:\n{pdf_text}"
else:
# Handle regular image
image = Image.open(file_path).convert("RGB")
images.append(image)
messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]})
else:
messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})
texts = processor.apply_chat_template(messages, add_generation_prompt=True)
if not images:
inputs = processor(text=texts, return_tensors="pt").to("cuda")
else:
# Handle multiple images if needed
max_images = 4 # Limit number of images to process
if len(images) > max_images:
images = images[:max_images]
txt += f"\n(Note: Only processing first {max_images} pages of the PDF)"
inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda")
streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
# Create the Gradio interface
demo = gr.ChatInterface(
fn=bot_streaming,
title="Document Analyzer",
examples=[
[{"text": "Which era does this piece belong to? Give details about the era.", "files":["./examples/rococo.jpg"]}, 200],
[{"text": "Where do the droughts happen according to this diagram?", "files":["./examples/weather_events.png"]}, 250],
[{"text": "What happens when you take out white cat from this chain?", "files":["./examples/ai2d_test.jpg"]}, 250],
[{"text": "How long does it take from invoice date to due date? Be short and concise.", "files":["./examples/invoice.png"]}, 250],
[{"text": "Where to find this monument? Can you give me other recommendations around the area?", "files":["./examples/wat_arun.jpg"]}, 250],
],
textbox=gr.MultimodalTextbox(),
additional_inputs=[
gr.Slider(
minimum=10,
maximum=500,
value=2048,
step=10,
label="Maximum number of new tokens to generate",
)
],
cache_examples=False,
description="MllM Document and PDF Analyzer",
stop_btn="Stop Generation",
fill_height=True,
multimodal=True
)
# Update accepted file types
demo.textbox.file_types = ["image", "pdf"]
# Launch the interface
demo.launch(debug=True) |