File size: 5,031 Bytes
df30043
686ef17
df30043
686ef17
 
 
 
 
 
e4611cf
 
 
5b73cc5
 
df30043
6c13452
df30043
15d82cf
e4611cf
 
 
 
5b73cc5
e4611cf
 
 
 
 
 
 
 
 
 
 
 
5b73cc5
 
121a196
488a981
686ef17
df30043
 
5b73cc5
686ef17
 
5b73cc5
 
686ef17
e4611cf
df30043
686ef17
 
 
5b73cc5
df30043
 
686ef17
5b73cc5
686ef17
e4611cf
 
488a981
e4611cf
 
 
 
5b73cc5
 
 
 
 
 
 
df30043
686ef17
df30043
686ef17
df30043
 
5b73cc5
df30043
 
e4611cf
 
 
 
 
 
df30043
5b73cc5
df30043
488a981
686ef17
df30043
686ef17
df30043
686ef17
df30043
686ef17
 
 
 
e4611cf
5b73cc5
 
 
 
 
 
 
 
 
488a981
5b73cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4611cf
5b73cc5
 
e4611cf
686ef17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer
from PIL import Image
import requests
import torch
from threading import Thread
import gradio as gr
from gradio import FileData
import time
import spaces
import fitz  # PyMuPDF
import io
import numpy as np

ckpt = "Daemontatox/DocumentCogito"
model = MllamaForConditionalGeneration.from_pretrained(ckpt,
    torch_dtype=torch.bfloat16).to("cuda")
processor = AutoProcessor.from_pretrained(ckpt)

def process_pdf_file(file_path):
    """Convert PDF to images and extract text using PyMuPDF."""
    doc = fitz.open(file_path)
    images = []
    text = ""
    
    for page in doc:
        # Extract text
        text += page.get_text() + "\n"
        
        # Convert page to image
        pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72))  # 300 DPI
        img_data = pix.tobytes("png")
        img = Image.open(io.BytesIO(img_data))
        images.append(img.convert("RGB"))
        
    doc.close()
    return images, text

@spaces.GPU()
def bot_streaming(message, history, max_new_tokens=2048):
    txt = message["text"]
    ext_buffer = f"{txt}"
    
    messages = []
    images = []
    
    # Process history
    for i, msg in enumerate(history):
        if isinstance(msg[0], tuple):
            messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]})
            messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
            images.append(Image.open(msg[0][0]).convert("RGB"))
        elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
            pass
        elif isinstance(history[i-1][0], str) and isinstance(msg[0], str):
            messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
            messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})

    # Process current message
    if len(message["files"]) == 1:
        file_data = message["files"][0]
        file_path = file_data["path"] if isinstance(file_data, dict) else file_data
        
        # Check if file is PDF
        if file_path.lower().endswith('.pdf'):
            # Process PDF
            pdf_images, pdf_text = process_pdf_file(file_path)
            images.extend(pdf_images)
            txt = f"{txt}\nExtracted text from PDF:\n{pdf_text}"
        else:
            # Handle regular image
            image = Image.open(file_path).convert("RGB")
            images.append(image)
            
        messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]})
    else:
        messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})

    texts = processor.apply_chat_template(messages, add_generation_prompt=True)

    if not images:
        inputs = processor(text=texts, return_tensors="pt").to("cuda")
    else:
        # Handle multiple images if needed
        max_images = 4  # Limit number of images to process
        if len(images) > max_images:
            images = images[:max_images]
            txt += f"\n(Note: Only processing first {max_images} pages of the PDF)"
        
        inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda")
    
    streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
    generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
    
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    buffer = ""
    
    for new_text in streamer:
        buffer += new_text
        time.sleep(0.01)
        yield buffer

# Create the Gradio interface
demo = gr.ChatInterface(
    fn=bot_streaming,
    title="Document Analyzer",
    examples=[
        [{"text": "Which era does this piece belong to? Give details about the era.", "files":["./examples/rococo.jpg"]}, 200],
        [{"text": "Where do the droughts happen according to this diagram?", "files":["./examples/weather_events.png"]}, 250],
        [{"text": "What happens when you take out white cat from this chain?", "files":["./examples/ai2d_test.jpg"]}, 250],
        [{"text": "How long does it take from invoice date to due date? Be short and concise.", "files":["./examples/invoice.png"]}, 250],
        [{"text": "Where to find this monument? Can you give me other recommendations around the area?", "files":["./examples/wat_arun.jpg"]}, 250],
    ],
    textbox=gr.MultimodalTextbox(),
    additional_inputs=[
        gr.Slider(
            minimum=10,
            maximum=500,
            value=2048,
            step=10,
            label="Maximum number of new tokens to generate",
        )
    ],
    cache_examples=False,
    description="MllM Document and PDF Analyzer",
    stop_btn="Stop Generation",
    fill_height=True,
    multimodal=True
)

# Update accepted file types
demo.textbox.file_types = ["image", "pdf"]

# Launch the interface
demo.launch(debug=True)