Spaces:
Running
Running
File size: 6,704 Bytes
df30043 686ef17 df30043 686ef17 e4611cf 5b73cc5 df30043 6c13452 df30043 15d82cf f9b55bc e4611cf 5b73cc5 e4611cf f9b55bc e4611cf f9b55bc e4611cf 5b73cc5 f9b55bc 121a196 488a981 686ef17 5b73cc5 686ef17 f9b55bc 5b73cc5 686ef17 e4611cf df30043 686ef17 5b73cc5 df30043 686ef17 f9b55bc 686ef17 df30043 686ef17 df30043 5b73cc5 df30043 f9b55bc e4611cf f9b55bc e4611cf df30043 5b73cc5 df30043 488a981 686ef17 df30043 686ef17 df30043 686ef17 df30043 686ef17 f9b55bc 5b73cc5 f9b55bc 5b73cc5 e4611cf 686ef17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer
from PIL import Image
import requests
import torch
from threading import Thread
import gradio as gr
from gradio import FileData
import time
import spaces
import fitz # PyMuPDF
import io
import numpy as np
ckpt = "Daemontatox/DocumentCogito"
model = MllamaForConditionalGeneration.from_pretrained(ckpt,
torch_dtype=torch.bfloat16).to("cuda")
processor = AutoProcessor.from_pretrained(ckpt)
class DocumentState:
def __init__(self):
self.current_doc_images = []
self.current_doc_text = ""
self.doc_type = None # 'pdf' or 'image'
def clear(self):
self.current_doc_images = []
self.current_doc_text = ""
self.doc_type = None
doc_state = DocumentState()
def process_pdf_file(file_path):
"""Convert PDF to images and extract text using PyMuPDF."""
doc = fitz.open(file_path)
images = []
text = ""
for page_num, page in enumerate(doc):
# Extract text
text += f"\n=== Page {page_num + 1} ===\n"
text += page.get_text() + "\n"
# Convert page to image
pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72)) # 300 DPI
img_data = pix.tobytes("png")
img = Image.open(io.BytesIO(img_data))
images.append(img.convert("RGB"))
doc.close()
return images, text
def process_file(file):
"""Process either PDF or image file and update document state."""
doc_state.clear()
if isinstance(file, dict):
file_path = file["path"]
else:
file_path = file
if file_path.lower().endswith('.pdf'):
doc_state.doc_type = 'pdf'
doc_state.current_doc_images, doc_state.current_doc_text = process_pdf_file(file_path)
return f"PDF processed successfully. {len(doc_state.current_doc_images)} pages loaded. You can now ask questions about the content."
else:
doc_state.doc_type = 'image'
doc_state.current_doc_images = [Image.open(file_path).convert("RGB")]
return "Image loaded successfully. You can now ask questions about the content."
@spaces.GPU()
def bot_streaming(message, history, max_new_tokens=2048):
txt = message["text"]
messages = []
images = []
# Process new file if provided
if message.get("files") and len(message["files"]) > 0:
process_file(message["files"][0])
# Process history and maintain context
for i, msg in enumerate(history):
if isinstance(msg[0], tuple):
messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]})
messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
pass
elif isinstance(history[i-1][0], str) and isinstance(msg[0], str):
messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
# Include document context in the current message
if doc_state.current_doc_images:
images.extend(doc_state.current_doc_images)
context = ""
if doc_state.doc_type == 'pdf':
context = f"\nContext from PDF:\n{doc_state.current_doc_text}"
current_msg = f"{txt}{context}"
messages.append({"role": "user", "content": [{"type": "text", "text": current_msg}, {"type": "image"}]})
else:
messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})
texts = processor.apply_chat_template(messages, add_generation_prompt=True)
if not images:
inputs = processor(text=texts, return_tensors="pt").to("cuda")
else:
# Process images in batches if needed
max_images = 12 # Increased maximum number of images/pages
if len(images) > max_images:
# Take evenly spaced samples if we have too many pages
indices = np.linspace(0, len(images) - 1, max_images, dtype=int)
images = [images[i] for i in indices]
txt += f"\n(Note: Analyzing {max_images} evenly distributed pages from the document)"
inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda")
streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
def clear_context():
"""Clear the current document context."""
doc_state.clear()
return "Document context cleared. You can upload a new document."
# Create the Gradio interface with enhanced features
with gr.Blocks() as demo:
gr.Markdown("# Document Analyzer with Chat Support")
gr.Markdown("Upload a PDF or image and chat about its contents. The context is maintained throughout the conversation.")
chatbot = gr.ChatInterface(
fn=bot_streaming,
title="Document Chat",
examples=[
[{"text": "Which era does this piece belong to? Give details about the era.", "files":["./examples/rococo.jpg"]}, 200],
[{"text": "Where do the droughts happen according to this diagram?", "files":["./examples/weather_events.png"]}, 250],
[{"text": "What happens when you take out white cat from this chain?", "files":["./examples/ai2d_test.jpg"]}, 250],
[{"text": "How long does it take from invoice date to due date? Be short and concise.", "files":["./examples/invoice.png"]}, 250],
[{"text": "Where to find this monument? Can you give me other recommendations around the area?", "files":["./examples/wat_arun.jpg"]}, 250],
],
textbox=gr.MultimodalTextbox(),
additional_inputs=[
gr.Slider(
minimum=10,
maximum=2048,
value=2048,
step=10,
label="Maximum number of new tokens to generate",
)
],
cache_examples=False,
stop_btn="Stop Generation",
fill_height=True,
multimodal=True
)
clear_btn = gr.Button("Clear Document Context")
clear_btn.click(fn=clear_context)
# Update accepted file types
chatbot.textbox.file_types = ["image", "pdf"]
# Launch the interface
demo.launch(debug=True) |