Vision_tester / app.py
Daemontatox's picture
Update app.py
e4611cf verified
raw
history blame
5.03 kB
from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer
from PIL import Image
import requests
import torch
from threading import Thread
import gradio as gr
from gradio import FileData
import time
import spaces
import fitz # PyMuPDF
import io
import numpy as np
ckpt = "Daemontatox/DocumentCogito"
model = MllamaForConditionalGeneration.from_pretrained(ckpt,
torch_dtype=torch.bfloat16).to("cuda")
processor = AutoProcessor.from_pretrained(ckpt)
def process_pdf_file(file_path):
"""Convert PDF to images and extract text using PyMuPDF."""
doc = fitz.open(file_path)
images = []
text = ""
for page in doc:
# Extract text
text += page.get_text() + "\n"
# Convert page to image
pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72)) # 300 DPI
img_data = pix.tobytes("png")
img = Image.open(io.BytesIO(img_data))
images.append(img.convert("RGB"))
doc.close()
return images, text
@spaces.GPU()
def bot_streaming(message, history, max_new_tokens=2048):
txt = message["text"]
ext_buffer = f"{txt}"
messages = []
images = []
# Process history
for i, msg in enumerate(history):
if isinstance(msg[0], tuple):
messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]})
messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
images.append(Image.open(msg[0][0]).convert("RGB"))
elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
pass
elif isinstance(history[i-1][0], str) and isinstance(msg[0], str):
messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
# Process current message
if len(message["files"]) == 1:
file_data = message["files"][0]
file_path = file_data["path"] if isinstance(file_data, dict) else file_data
# Check if file is PDF
if file_path.lower().endswith('.pdf'):
# Process PDF
pdf_images, pdf_text = process_pdf_file(file_path)
images.extend(pdf_images)
txt = f"{txt}\nExtracted text from PDF:\n{pdf_text}"
else:
# Handle regular image
image = Image.open(file_path).convert("RGB")
images.append(image)
messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]})
else:
messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})
texts = processor.apply_chat_template(messages, add_generation_prompt=True)
if not images:
inputs = processor(text=texts, return_tensors="pt").to("cuda")
else:
# Handle multiple images if needed
max_images = 4 # Limit number of images to process
if len(images) > max_images:
images = images[:max_images]
txt += f"\n(Note: Only processing first {max_images} pages of the PDF)"
inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda")
streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
# Create the Gradio interface
demo = gr.ChatInterface(
fn=bot_streaming,
title="Document Analyzer",
examples=[
[{"text": "Which era does this piece belong to? Give details about the era.", "files":["./examples/rococo.jpg"]}, 200],
[{"text": "Where do the droughts happen according to this diagram?", "files":["./examples/weather_events.png"]}, 250],
[{"text": "What happens when you take out white cat from this chain?", "files":["./examples/ai2d_test.jpg"]}, 250],
[{"text": "How long does it take from invoice date to due date? Be short and concise.", "files":["./examples/invoice.png"]}, 250],
[{"text": "Where to find this monument? Can you give me other recommendations around the area?", "files":["./examples/wat_arun.jpg"]}, 250],
],
textbox=gr.MultimodalTextbox(),
additional_inputs=[
gr.Slider(
minimum=10,
maximum=500,
value=2048,
step=10,
label="Maximum number of new tokens to generate",
)
],
cache_examples=False,
description="MllM Document and PDF Analyzer",
stop_btn="Stop Generation",
fill_height=True,
multimodal=True
)
# Update accepted file types
demo.textbox.file_types = ["image", "pdf"]
# Launch the interface
demo.launch(debug=True)