Vision_tester / app.py
Daemontatox's picture
Update app.py
f9b55bc verified
raw
history blame
6.7 kB
from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer
from PIL import Image
import requests
import torch
from threading import Thread
import gradio as gr
from gradio import FileData
import time
import spaces
import fitz # PyMuPDF
import io
import numpy as np
ckpt = "Daemontatox/DocumentCogito"
model = MllamaForConditionalGeneration.from_pretrained(ckpt,
torch_dtype=torch.bfloat16).to("cuda")
processor = AutoProcessor.from_pretrained(ckpt)
class DocumentState:
def __init__(self):
self.current_doc_images = []
self.current_doc_text = ""
self.doc_type = None # 'pdf' or 'image'
def clear(self):
self.current_doc_images = []
self.current_doc_text = ""
self.doc_type = None
doc_state = DocumentState()
def process_pdf_file(file_path):
"""Convert PDF to images and extract text using PyMuPDF."""
doc = fitz.open(file_path)
images = []
text = ""
for page_num, page in enumerate(doc):
# Extract text
text += f"\n=== Page {page_num + 1} ===\n"
text += page.get_text() + "\n"
# Convert page to image
pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72)) # 300 DPI
img_data = pix.tobytes("png")
img = Image.open(io.BytesIO(img_data))
images.append(img.convert("RGB"))
doc.close()
return images, text
def process_file(file):
"""Process either PDF or image file and update document state."""
doc_state.clear()
if isinstance(file, dict):
file_path = file["path"]
else:
file_path = file
if file_path.lower().endswith('.pdf'):
doc_state.doc_type = 'pdf'
doc_state.current_doc_images, doc_state.current_doc_text = process_pdf_file(file_path)
return f"PDF processed successfully. {len(doc_state.current_doc_images)} pages loaded. You can now ask questions about the content."
else:
doc_state.doc_type = 'image'
doc_state.current_doc_images = [Image.open(file_path).convert("RGB")]
return "Image loaded successfully. You can now ask questions about the content."
@spaces.GPU()
def bot_streaming(message, history, max_new_tokens=2048):
txt = message["text"]
messages = []
images = []
# Process new file if provided
if message.get("files") and len(message["files"]) > 0:
process_file(message["files"][0])
# Process history and maintain context
for i, msg in enumerate(history):
if isinstance(msg[0], tuple):
messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]})
messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
pass
elif isinstance(history[i-1][0], str) and isinstance(msg[0], str):
messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
# Include document context in the current message
if doc_state.current_doc_images:
images.extend(doc_state.current_doc_images)
context = ""
if doc_state.doc_type == 'pdf':
context = f"\nContext from PDF:\n{doc_state.current_doc_text}"
current_msg = f"{txt}{context}"
messages.append({"role": "user", "content": [{"type": "text", "text": current_msg}, {"type": "image"}]})
else:
messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})
texts = processor.apply_chat_template(messages, add_generation_prompt=True)
if not images:
inputs = processor(text=texts, return_tensors="pt").to("cuda")
else:
# Process images in batches if needed
max_images = 12 # Increased maximum number of images/pages
if len(images) > max_images:
# Take evenly spaced samples if we have too many pages
indices = np.linspace(0, len(images) - 1, max_images, dtype=int)
images = [images[i] for i in indices]
txt += f"\n(Note: Analyzing {max_images} evenly distributed pages from the document)"
inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda")
streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
def clear_context():
"""Clear the current document context."""
doc_state.clear()
return "Document context cleared. You can upload a new document."
# Create the Gradio interface with enhanced features
with gr.Blocks() as demo:
gr.Markdown("# Document Analyzer with Chat Support")
gr.Markdown("Upload a PDF or image and chat about its contents. The context is maintained throughout the conversation.")
chatbot = gr.ChatInterface(
fn=bot_streaming,
title="Document Chat",
examples=[
[{"text": "Which era does this piece belong to? Give details about the era.", "files":["./examples/rococo.jpg"]}, 200],
[{"text": "Where do the droughts happen according to this diagram?", "files":["./examples/weather_events.png"]}, 250],
[{"text": "What happens when you take out white cat from this chain?", "files":["./examples/ai2d_test.jpg"]}, 250],
[{"text": "How long does it take from invoice date to due date? Be short and concise.", "files":["./examples/invoice.png"]}, 250],
[{"text": "Where to find this monument? Can you give me other recommendations around the area?", "files":["./examples/wat_arun.jpg"]}, 250],
],
textbox=gr.MultimodalTextbox(),
additional_inputs=[
gr.Slider(
minimum=10,
maximum=2048,
value=2048,
step=10,
label="Maximum number of new tokens to generate",
)
],
cache_examples=False,
stop_btn="Stop Generation",
fill_height=True,
multimodal=True
)
clear_btn = gr.Button("Clear Document Context")
clear_btn.click(fn=clear_context)
# Update accepted file types
chatbot.textbox.file_types = ["image", "pdf"]
# Launch the interface
demo.launch(debug=True)