File size: 4,315 Bytes
bba84bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e138b53
bba84bb
 
 
 
adef9e5
 
 
 
 
bba84bb
 
adef9e5
 
 
 
 
bba84bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e138b53
 
bba84bb
 
 
e138b53
 
 
 
 
bba84bb
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
#!/usr/bin/env python3
import datetime, os, subprocess, tempfile
from pathlib import Path

import pandas as pd, yaml, torch
from huggingface_hub import HfApi, login, hf_hub_download
from lm_eval import evaluator
from lm_eval.models.huggingface import HFLM
from peft import PeftModel
from transformers import (
    AutoModelForCausalLM,
    AutoModelForSequenceClassification,
    AutoTokenizer,
)

CONFIGS = []

# ───── Load all configs ─────
if Path("adapters.yaml").exists():
    CONFIGS.extend(yaml.safe_load(open("adapters.yaml"))["adapters"])

for yml in Path("manifests").glob("*.yaml"):
    CONFIGS.append(yaml.safe_load(open(yml)))

if not CONFIGS:
    raise RuntimeError("No adapter configs found in adapters.yaml or manifests/")

# ───── Hugging Face auth ─────
token = os.getenv("HF_TOKEN")
if not token or token == "***":
    raise RuntimeError("HF_TOKEN secret is missing.")
login(token)

DATASET_REPO = os.environ["HF_DATASET_REPO"]
api = HfApi()

# ───── Evaluate each adapter ─────
all_rows = []
METRICS_TO_KEEP = {"acc", "accuracy", "acc_stderr", "f1", "exact_match"}

for cfg in CONFIGS:
    base_model_id = cfg["base_model"]
    adapter_repo = cfg["adapter_repo"]
    adapter_type = cfg.get("adapter_type", "LoRA")
    tasks = cfg["tasks"]

    print(f"\nLoading base model: {base_model_id}")
    tokenizer = AutoTokenizer.from_pretrained(base_model_id, use_fast=True)

    # Try causal first, fallback to encoder
    try:
        base_model = AutoModelForCausalLM.from_pretrained(
            base_model_id,
            trust_remote_code=True,
            use_safetensors=True
        )        
        is_encoder = False
    except:
        base_model = AutoModelForSequenceClassification.from_pretrained(
            base_model_id,
            trust_remote_code=True,
            use_safetensors=True
        )
        is_encoder = True

    peft_model = PeftModel.from_pretrained(base_model, adapter_repo)
    merged_model = peft_model.merge_and_unload()
    device = "cuda" if torch.cuda.is_available() else "cpu"
    merged_model.to(device)
    merged_model.eval()

    with tempfile.TemporaryDirectory() as td:
        merged_model.save_pretrained(td)
        tokenizer.save_pretrained(td)

        hf_lm = HFLM(
            pretrained=td,
            batch_size=8 if not is_encoder else 16,
            device=device,
        )
        res = evaluator.simple_evaluate(model=hf_lm, tasks=tasks)

    meta = {
        "model_id": adapter_repo,
        "adapter_type": adapter_type,
        "trainable_params": cfg.get("trainable_params"),
        "peak_gpu_mem_mb": torch.cuda.max_memory_allocated(device) // 1024**2 if torch.cuda.is_available() else None,
        "run_date": datetime.datetime.utcnow().isoformat(timespec="seconds"),
        "commit_sha": subprocess.check_output(["git", "rev-parse", "HEAD"]).strip().decode(),
    }

    for task, scores in res["results"].items():
        for metric, value in scores.items():
            if metric not in METRICS_TO_KEEP:
                continue
            all_rows.append({**meta, "task": task, "metric": metric, "value": value})

# ───── Merge and upload results ─────
df_new = pd.DataFrame(all_rows)

with tempfile.TemporaryDirectory() as tmp:
    current_path = hf_hub_download(
        repo_id=DATASET_REPO,
        filename="data/peft_bench.parquet",
        repo_type="dataset",
        cache_dir=tmp,
        local_dir=tmp,
        local_dir_use_symlinks=False,
    )
    df_existing = pd.read_parquet(current_path)
    df_combined = pd.concat([df_existing, df_new], ignore_index=True)

    df_combined = df_combined.sort_values("run_date")


    df_combined["value"] = pd.to_numeric(df_combined["value"], errors="coerce")

    print("Existing rows:", len(df_existing))
    print("New rows:", len(df_new))
    print("Combined rows (pre-dedup):", len(df_existing) + len(df_new))
    print("Final rows (after dedup):", len(df_combined))

    out = Path("peft_bench.parquet")
    df_combined.to_parquet(out, index=False)

    api.upload_file(
        path_or_fileobj=out,
        path_in_repo="data/peft_bench.parquet",
        repo_id=DATASET_REPO,
        repo_type="dataset",
        commit_message=f"Add {len(CONFIGS)} new adapter run(s)",
    )