Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -4,24 +4,28 @@ import subprocess
|
|
4 |
import os
|
5 |
import tempfile
|
6 |
|
7 |
-
|
8 |
-
def convert_ts_to_mp4(dataset_name, file_name):
|
9 |
"""
|
10 |
Downloads a .ts video file from a Hugging Face dataset,
|
11 |
converts it to .mp4 using ffmpeg, and returns the path
|
12 |
-
to the .mp4 file.
|
13 |
|
14 |
Args:
|
15 |
dataset_name (str): The name of the Hugging Face dataset.
|
16 |
file_name (str): The name of the .ts file within the dataset.
|
17 |
It should be just the filename, not the full path.
|
|
|
|
|
18 |
|
19 |
Returns:
|
20 |
str: The path to the converted .mp4 file, or None on error.
|
21 |
"""
|
22 |
try:
|
23 |
# 1. Load the dataset
|
24 |
-
|
|
|
|
|
|
|
25 |
|
26 |
# 2. Find the file. This part assumes the filename is unique
|
27 |
# within the dataset. For more complex datasets, you might
|
@@ -35,7 +39,7 @@ def convert_ts_to_mp4(dataset_name, file_name):
|
|
35 |
if "file" in example and os.path.basename(example["file"]) == file_name:
|
36 |
file_url = example["file"]
|
37 |
break
|
38 |
-
elif isinstance(example, dict):
|
39 |
for key, value in example.items():
|
40 |
if isinstance(value, str) and os.path.basename(value) == file_name:
|
41 |
file_url = value;
|
@@ -68,7 +72,7 @@ def convert_ts_to_mp4(dataset_name, file_name):
|
|
68 |
"-c:v",
|
69 |
"libx264", # Use libx264 for H.264 encoding (common)
|
70 |
"-c:a",
|
71 |
-
"aac",
|
72 |
"-y", # Overwrite output file if it exists
|
73 |
mp4_file.name,
|
74 |
],
|
@@ -89,6 +93,7 @@ def convert_ts_to_mp4(dataset_name, file_name):
|
|
89 |
return f"An error occurred: {e}"
|
90 |
|
91 |
|
|
|
92 |
def gradio_interface():
|
93 |
"""
|
94 |
Defines the Gradio interface for the application.
|
@@ -96,12 +101,17 @@ def gradio_interface():
|
|
96 |
inputs = [
|
97 |
gr.Textbox(
|
98 |
label="Hugging Face Dataset Name",
|
99 |
-
placeholder="e.g., 'PolyAI/minds-14'",
|
100 |
),
|
101 |
gr.Textbox(
|
102 |
label="TS File Name (within the dataset)",
|
103 |
placeholder="e.g., 'file_name.ts'",
|
104 |
),
|
|
|
|
|
|
|
|
|
|
|
105 |
]
|
106 |
outputs = gr.File(label="Converted MP4 File") # Use gr.File for downloadable files
|
107 |
|
@@ -109,18 +119,22 @@ def gradio_interface():
|
|
109 |
description = (
|
110 |
"Convert .ts video files from Hugging Face datasets to .mp4 format. "
|
111 |
"Provide the dataset name and the name of the .ts file. The converted "
|
112 |
-
".mp4 file will be available for download."
|
|
|
113 |
)
|
114 |
|
115 |
# Example Usage (Corrected)
|
116 |
article = """
|
117 |
Example Usage:
|
118 |
|
119 |
-
1. For
|
120 |
-
enter 'PolyAI/minds-14' in the
|
121 |
-
'common_voice_en_7722.ts' in the
|
122 |
-
2.
|
123 |
-
|
|
|
|
|
|
|
124 |
"""
|
125 |
|
126 |
return gr.Interface(
|
@@ -133,5 +147,6 @@ def gradio_interface():
|
|
133 |
)
|
134 |
|
135 |
|
|
|
136 |
if __name__ == "__main__":
|
137 |
gradio_interface().launch()
|
|
|
4 |
import os
|
5 |
import tempfile
|
6 |
|
7 |
+
def convert_ts_to_mp4(dataset_name, file_name, hf_token):
|
|
|
8 |
"""
|
9 |
Downloads a .ts video file from a Hugging Face dataset,
|
10 |
converts it to .mp4 using ffmpeg, and returns the path
|
11 |
+
to the .mp4 file. Handles both public and private datasets.
|
12 |
|
13 |
Args:
|
14 |
dataset_name (str): The name of the Hugging Face dataset.
|
15 |
file_name (str): The name of the .ts file within the dataset.
|
16 |
It should be just the filename, not the full path.
|
17 |
+
hf_token (str): The Hugging Face token. If None or empty,
|
18 |
+
it's assumed the dataset is public.
|
19 |
|
20 |
Returns:
|
21 |
str: The path to the converted .mp4 file, or None on error.
|
22 |
"""
|
23 |
try:
|
24 |
# 1. Load the dataset
|
25 |
+
if hf_token:
|
26 |
+
dataset = load_dataset(dataset_name, use_auth_token=hf_token, streaming=True)
|
27 |
+
else:
|
28 |
+
dataset = load_dataset(dataset_name, streaming=True)
|
29 |
|
30 |
# 2. Find the file. This part assumes the filename is unique
|
31 |
# within the dataset. For more complex datasets, you might
|
|
|
39 |
if "file" in example and os.path.basename(example["file"]) == file_name:
|
40 |
file_url = example["file"]
|
41 |
break
|
42 |
+
elif isinstance(example, dict): # Check for nested file paths.
|
43 |
for key, value in example.items():
|
44 |
if isinstance(value, str) and os.path.basename(value) == file_name:
|
45 |
file_url = value;
|
|
|
72 |
"-c:v",
|
73 |
"libx264", # Use libx264 for H.264 encoding (common)
|
74 |
"-c:a",
|
75 |
+
"aac", # Use AAC for audio encoding (common)
|
76 |
"-y", # Overwrite output file if it exists
|
77 |
mp4_file.name,
|
78 |
],
|
|
|
93 |
return f"An error occurred: {e}"
|
94 |
|
95 |
|
96 |
+
|
97 |
def gradio_interface():
|
98 |
"""
|
99 |
Defines the Gradio interface for the application.
|
|
|
101 |
inputs = [
|
102 |
gr.Textbox(
|
103 |
label="Hugging Face Dataset Name",
|
104 |
+
placeholder="e.g., 'PolyAI/minds-14' or 'my-org/my-private-dataset'",
|
105 |
),
|
106 |
gr.Textbox(
|
107 |
label="TS File Name (within the dataset)",
|
108 |
placeholder="e.g., 'file_name.ts'",
|
109 |
),
|
110 |
+
gr.Textbox(
|
111 |
+
label="Hugging Face Token (for private datasets)",
|
112 |
+
placeholder="(Optional) Enter your Hugging Face token here, or set it as HF_TOKEN in Space settings",
|
113 |
+
type="password",
|
114 |
+
),
|
115 |
]
|
116 |
outputs = gr.File(label="Converted MP4 File") # Use gr.File for downloadable files
|
117 |
|
|
|
119 |
description = (
|
120 |
"Convert .ts video files from Hugging Face datasets to .mp4 format. "
|
121 |
"Provide the dataset name and the name of the .ts file. The converted "
|
122 |
+
".mp4 file will be available for download. "
|
123 |
+
"For private datasets, you *must* provide a Hugging Face token, either directly in the input box, or, preferably, by setting the `HF_TOKEN` secret in your Space's settings."
|
124 |
)
|
125 |
|
126 |
# Example Usage (Corrected)
|
127 |
article = """
|
128 |
Example Usage:
|
129 |
|
130 |
+
1. For a public dataset like 'PolyAI/minds-14' and the file 'audio/en/common_voice_en_7722.ts',
|
131 |
+
enter 'PolyAI/minds-14' in the "Hugging Face Dataset Name" field and
|
132 |
+
'common_voice_en_7722.ts' in the "TS File Name" field. Leave the "Hugging Face Token" field empty.
|
133 |
+
2. For a private dataset, enter the dataset name (e.g., 'my-org/my-private-dataset')
|
134 |
+
and the .ts file name. Enter your Hugging Face token in the "Hugging Face Token" field
|
135 |
+
*or*, preferably, add your token as a secret named `HF_TOKEN` in your Space's settings.
|
136 |
+
3. Click the 'Submit' button.
|
137 |
+
4. The converted .mp4 file will be processed, and a download link will be provided.
|
138 |
"""
|
139 |
|
140 |
return gr.Interface(
|
|
|
147 |
)
|
148 |
|
149 |
|
150 |
+
|
151 |
if __name__ == "__main__":
|
152 |
gradio_interface().launch()
|