File size: 959 Bytes
29585cd
 
af39961
29585cd
af39961
29585cd
1c9efe9
29585cd
 
 
af39961
29585cd
 
 
 
 
 
af0757c
29585cd
 
 
635422f
29585cd
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
from flask import Flask, request, render_template
from transformers import pipeline

app = Flask(__name__)

nlp = pipeline('sentiment-analysis')

@app.route('/')
def home():
    return render_template('index.html')

@app.route('/predict',methods=['POST'])
def predict():
    if request.method == 'POST':
        message = request.form['message']
        prediction = nlp(message)
        return render_template('index.html', prediction_text=prediction)

if __name__ == "__main__":
    app.run(debug=True)
from transformers import GPT3LMHeadModel, GPT2Tokenizer

tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT3LMHeadModel.from_pretrained("gpt3")

def get_response(prompt):
    inputs = tokenizer.encode(prompt, return_tensors="pt")
    outputs = model.generate(inputs, max_length=150, num_return_sequences=1, no_repeat_ngram_size=2)
    response = tokenizer.decode(outputs[:, inputs.shape[-1]:][0], skip_special_tokens=True)
    return response