|
|
|
import gradio as gr |
|
import spacy |
|
from transformers import pipeline |
|
|
|
nlp = spacy.load('es_core_news_sm') |
|
text_generator = pipeline('text-generation', model='gpt2') |
|
|
|
pos_tags = ['ADJ', 'ADP', 'ADV', 'AUX', 'CONJ', 'DET', 'INTJ', 'NOUN', 'NUM', 'PART', 'PRON', 'PROPN', 'PUNCT', 'SCONJ', 'SYM', 'VERB', 'X'] |
|
|
|
sentence_state = {'sentence': '', 'tagged_words': []} |
|
|
|
def generate_sentence(): |
|
result = text_generator('')[0] |
|
sentence = result['generated_text'] |
|
tagged_words = analyze_sentence(sentence) |
|
sentence_state['sentence'] = sentence |
|
sentence_state['tagged_words'] = tagged_words |
|
return sentence, [word for word, _ in tagged_words] |
|
|
|
def analyze_sentence(sentence): |
|
doc = nlp(sentence) |
|
return [(token.text, token.pos_) for token in doc] |
|
|
|
def check_answer(*args): |
|
correct_answer = [tag for word, tag in sentence_state['tagged_words']] |
|
user_answer = list(args) |
|
if user_answer == correct_answer: |
|
return 'Correcto!' |
|
else: |
|
return 'Incorrecto. La respuesta correcta es: ' + str(correct_answer) |
|
|
|
def game_flow(): |
|
sentence, words = generate_sentence() |
|
answer = check_answer(*gr.inputs) |
|
return sentence, words, answer |
|
|
|
iface = gr.Interface(fn=game_flow, |
|
inputs=[gr.inputs.Button(label='Generate Sentence')] + |
|
[gr.inputs.Dropdown(choices=pos_tags, label=f'Word {i+1}') for i in range(len(sentence_state['tagged_words']))], |
|
outputs=[gr.outputs.Textbox(label='Sentence'), |
|
gr.outputs.Textbox(label='Words'), |
|
gr.outputs.Textbox(label='Result')]) |
|
iface.launch() |
|
|