GramAPP / app.py
Merlintxu's picture
Update app.py
c2fc6b8
raw
history blame
1.67 kB
## app.py ##
import gradio as gr
import spacy
from transformers import pipeline
nlp = spacy.load('es_core_news_sm')
text_generator = pipeline('text-generation', model='gpt2')
pos_tags = ['ADJ', 'ADP', 'ADV', 'AUX', 'CONJ', 'DET', 'INTJ', 'NOUN', 'NUM', 'PART', 'PRON', 'PROPN', 'PUNCT', 'SCONJ', 'SYM', 'VERB', 'X']
sentence_state = {'sentence': '', 'tagged_words': []}
def generate_sentence():
result = text_generator('')[0]
sentence = result['generated_text']
tagged_words = analyze_sentence(sentence)
sentence_state['sentence'] = sentence
sentence_state['tagged_words'] = tagged_words
return sentence, [word for word, _ in tagged_words]
def analyze_sentence(sentence):
doc = nlp(sentence)
return [(token.text, token.pos_) for token in doc]
def check_answer(*args):
correct_answer = [tag for word, tag in sentence_state['tagged_words']]
user_answer = list(args)
if user_answer == correct_answer:
return 'Correcto!'
else:
return 'Incorrecto. La respuesta correcta es: ' + str(correct_answer)
def game_flow():
sentence, words = generate_sentence()
answer = check_answer(*gr.inputs)
return sentence, words, answer
iface = gr.Interface(fn=game_flow,
inputs=[gr.inputs.Button(label='Generate Sentence')] +
[gr.inputs.Dropdown(choices=pos_tags, label=f'Word {i+1}') for i in range(len(sentence_state['tagged_words']))],
outputs=[gr.outputs.Textbox(label='Sentence'),
gr.outputs.Textbox(label='Words'),
gr.outputs.Textbox(label='Result')])
iface.launch()