File size: 6,936 Bytes
4e7ec06 1100e65 b09f327 639051f 4e7ec06 7a3a01f 110c781 4e7ec06 110c781 953582f 4e7ec06 ce4312e 639051f 4e7ec06 82b85b5 4e7ec06 82b85b5 4e7ec06 4ed1e63 4e7ec06 53bdf99 110c781 53bdf99 a123d64 53bdf99 110c781 4e7ec06 dce154d 4e7ec06 110c781 4e7ec06 110c781 4e7ec06 110c781 4e7ec06 110c781 4e7ec06 110c781 4e7ec06 b3174ad dce154d 110c781 b3174ad 04933a2 53bdf99 110c781 4e7ec06 110c781 53bdf99 110c781 4e7ec06 110c781 4e7ec06 110c781 53bdf99 26cf8bb 4e7ec06 26cf8bb 4e7ec06 81f702f 6575bf4 4e7ec06 31b9df5 4e7ec06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import base64
import io
import os
import threading
import tempfile
import logging
import openai
from dash import Dash, dcc, html, Input, Output, State, callback
import dash_bootstrap_components as dbc
from pydub import AudioSegment
import requests
from pytube import YouTube
import moviepy.editor as mp
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Initialize the Dash app
app = Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
# Global variables
generated_file = None
transcription_text = ""
# Set up OpenAI API key
openai.api_key = os.getenv("OPENAI_API_KEY")
# Layout
app.layout = dbc.Container([
html.H1("Audio/Video Transcription and Diarization App", className="text-center my-4"),
dbc.Card([
dbc.CardBody([
dcc.Upload(
id='upload-media',
children=html.Div([
'Drag and Drop or ',
html.A('Select Audio/Video File')
]),
style={
'width': '100%',
'height': '60px',
'lineHeight': '60px',
'borderWidth': '1px',
'borderStyle': 'dashed',
'borderRadius': '5px',
'textAlign': 'center',
'margin': '10px'
},
multiple=False
),
html.Div(id='output-media-upload'),
dbc.Input(id="url-input", type="text", placeholder="Enter audio/video URL (including YouTube)", className="mb-3"),
dbc.Button("Process URL", id="process-url-button", color="primary", className="mb-3"),
dbc.Spinner(html.Div(id='transcription-status'), color="primary", type="grow"),
html.H4("Diarized Transcription Preview", className="mt-4"),
html.Div(id='transcription-preview', style={'whiteSpace': 'pre-wrap'}),
html.Br(),
dbc.Button("Download Transcription", id="btn-download", color="primary", className="mt-3", disabled=True),
dcc.Download(id="download-transcription")
])
])
], fluid=True)
def process_media(file_path, is_url=False):
global generated_file, transcription_text
temp_audio_file = None
try:
if is_url:
if 'youtube.com' in file_path or 'youtu.be' in file_path:
yt = YouTube(file_path)
stream = yt.streams.filter(only_audio=True).first()
temp_audio_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
stream.download(output_path=os.path.dirname(temp_audio_file.name), filename=os.path.basename(temp_audio_file.name))
else:
response = requests.get(file_path)
temp_audio_file = tempfile.NamedTemporaryFile(delete=False)
temp_audio_file.write(response.content)
temp_audio_file.close()
else:
temp_audio_file = tempfile.NamedTemporaryFile(delete=False)
temp_audio_file.write(file_path)
temp_audio_file.close()
file_extension = os.path.splitext(temp_audio_file.name)[1].lower()
if file_extension in ['.mp4', '.avi', '.mov', '.flv', '.wmv']:
video = mp.VideoFileClip(temp_audio_file.name)
audio = video.audio
wav_path = temp_audio_file.name + ".wav"
audio.write_audiofile(wav_path)
video.close()
elif file_extension in ['.wav', '.mp3', '.ogg', '.flac']:
audio = AudioSegment.from_file(temp_audio_file.name)
wav_path = temp_audio_file.name + ".wav"
audio.export(wav_path, format="wav")
else:
return "Unsupported file format. Please upload an audio or video file.", False
with open(wav_path, "rb") as audio_file:
transcript = openai.Audio.transcribe("whisper-1", audio_file)
audio_file.seek(0)
diarized_transcript = openai.Audio.transcribe("whisper-1", audio_file, response_format="verbose_json")
formatted_transcript = ""
if 'segments' in diarized_transcript:
for segment in diarized_transcript["segments"]:
speaker = segment.get('speaker', 'Unknown')
text = segment.get('text', '')
formatted_transcript += f"Speaker {speaker}: {text}\n\n"
else:
formatted_transcript = transcript.get('text', 'No transcription available.')
transcription_text = formatted_transcript
generated_file = io.BytesIO(transcription_text.encode())
return "Transcription and diarization completed successfully!", True
except Exception as e:
logger.error(f"Error during processing: {str(e)}")
return f"An error occurred: {str(e)}", False
finally:
if temp_audio_file and os.path.exists(temp_audio_file.name):
os.unlink(temp_audio_file.name)
if 'wav_path' in locals() and os.path.exists(wav_path):
os.unlink(wav_path)
@app.callback(
[Output('output-media-upload', 'children'),
Output('transcription-status', 'children'),
Output('transcription-preview', 'children'),
Output('btn-download', 'disabled')],
[Input('upload-media', 'contents'),
Input('process-url-button', 'n_clicks')],
[State('upload-media', 'filename'),
State('url-input', 'value')]
)
def update_output(contents, n_clicks, filename, url):
ctx = callback_context
if not ctx.triggered:
return "No file uploaded or URL processed.", "", "", True
trigger_id = ctx.triggered[0]['prop_id'].split('.')[0]
if trigger_id == 'upload-media' and contents is not None:
content_type, content_string = contents.split(',')
decoded = base64.b64decode(content_string)
status_message, success = process_media(decoded)
elif trigger_id == 'process-url-button' and url:
status_message, success = process_media(url, is_url=True)
else:
return "No file uploaded or URL processed.", "", "", True
if success:
preview = transcription_text[:1000] + "..." if len(transcription_text) > 1000 else transcription_text
return f"File processed successfully.", status_message, preview, False
else:
return "Processing failed.", status_message, "", True
@app.callback(
Output("download-transcription", "data"),
Input("btn-download", "n_clicks"),
prevent_initial_call=True,
)
def download_transcription(n_clicks):
if n_clicks is None:
return None
return dcc.send_bytes(generated_file.getvalue(), "diarized_transcription.txt")
if __name__ == '__main__':
print("Starting the Dash application...")
app.run(debug=True, host='0.0.0.0', port=7860)
print("Dash application has finished running.") |