File size: 8,140 Bytes
4e7ec06 1100e65 b09f327 639051f 4e7ec06 7a3a01f bc3b705 110c781 4e7ec06 110c781 b8cd6c2 6a11fc5 953582f 4e7ec06 ce4312e c8ceed5 7594178 c8ceed5 ee2cdf3 4288efb 639051f 4e7ec06 82b85b5 4e7ec06 82b85b5 4e7ec06 4ed1e63 4e7ec06 53bdf99 110c781 d398f2e 110c781 53bdf99 a123d64 53bdf99 110c781 4e7ec06 4288efb 4e7ec06 110c781 6a11fc5 b8cd6c2 110c781 6a11fc5 4288efb 6a11fc5 4e7ec06 b8cd6c2 110c781 6a11fc5 110c781 6a11fc5 110c781 4e7ec06 110c781 4e7ec06 4288efb b3174ad 4288efb 53bdf99 110c781 4e7ec06 110c781 53bdf99 110c781 b8cd6c2 110c781 57c2b38 110c781 57c2b38 110c781 4e7ec06 57c2b38 4e7ec06 b8cd6c2 53bdf99 26cf8bb 4e7ec06 26cf8bb 4e7ec06 81f702f 6575bf4 4e7ec06 31b9df5 4e7ec06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import base64
import io
import os
import threading
import tempfile
import logging
import openai
from dash import Dash, dcc, html, Input, Output, State, callback, callback_context
import dash_bootstrap_components as dbc
from pydub import AudioSegment
import requests
import yt_dlp
import mimetypes
import urllib.parse
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Try to import moviepy with the simpler import statement
try:
from moviepy import VideoFileClip
logger.info("MoviePy (VideoFileClip) successfully imported")
except ImportError as e:
logger.error(f"Error importing MoviePy (VideoFileClip): {str(e)}")
logger.error("Please ensure moviepy is installed correctly")
raise
# Supported file formats
AUDIO_FORMATS = ['.wav', '.mp3', '.ogg', '.flac', '.aac', '.m4a', '.wma']
VIDEO_FORMATS = ['.mp4', '.avi', '.mov', '.flv', '.wmv', '.mkv', '.webm']
SUPPORTED_FORMATS = AUDIO_FORMATS + VIDEO_FORMATS
# Initialize the Dash app
app = Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
# Global variables
generated_file = None
transcription_text = ""
# Set up OpenAI API key
openai.api_key = os.getenv("OPENAI_API_KEY")
# Layout
app.layout = dbc.Container([
html.H1("Audio/Video Transcription and Diarization App", className="text-center my-4"),
dbc.Card([
dbc.CardBody([
dcc.Upload(
id='upload-media',
children=html.Div([
'Drag and Drop or ',
html.A('Select Audio/Video File')
]),
style={
'width': '100%',
'height': '60px',
'lineHeight': '60px',
'borderWidth': '1px',
'borderStyle': 'dashed',
'borderRadius': '5px',
'textAlign': 'center',
'margin': '10px'
},
multiple=False
),
html.Div(id='output-media-upload'),
dbc.Input(id="url-input", type="text", placeholder="Enter audio/video URL (including YouTube)", className="mb-3"),
dbc.Button("Process URL", id="process-url-button", color="primary", className="mb-3"),
dbc.Spinner(html.Div(id='transcription-status'), color="primary", type="grow"),
html.H4("Diarized Transcription Preview", className="mt-4"),
html.Div(id='transcription-preview', style={'whiteSpace': 'pre-wrap'}),
html.Br(),
dbc.Button("Download Transcription", id="btn-download", color="primary", className="mt-3", disabled=True),
dcc.Download(id="download-transcription")
])
])
], fluid=True)
def process_media(file_path, is_url=False):
global generated_file, transcription_text
temp_file = None
wav_path = None
try:
if is_url:
logger.info(f"Processing URL: {file_path}")
try:
ydl_opts = {
'format': 'bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'wav',
}],
'outtmpl': '%(id)s.%(ext)s',
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(file_path, download=True)
wav_path = f"{info['id']}.wav"
logger.info(f"Audio downloaded: {wav_path}")
except Exception as e:
logger.error(f"Error downloading audio from URL: {str(e)}")
return f"Error downloading audio from URL: {str(e)}", False
else:
logger.info("Processing uploaded file")
temp_file = tempfile.NamedTemporaryFile(delete=False)
temp_file.write(file_path)
temp_file.close()
logger.info(f"Uploaded file saved: {temp_file.name}")
file_extension = os.path.splitext(temp_file.name)[1].lower()
logger.info(f"Detected file extension: {file_extension}")
if file_extension in VIDEO_FORMATS:
logger.info("Processing video file")
video = VideoFileClip(temp_file.name)
audio = video.audio
wav_path = temp_file.name + ".wav"
audio.write_audiofile(wav_path)
video.close()
elif file_extension in AUDIO_FORMATS:
logger.info("Processing audio file")
audio = AudioSegment.from_file(temp_file.name, format=file_extension[1:])
wav_path = temp_file.name + ".wav"
audio.export(wav_path, format="wav")
else:
logger.error(f"Unsupported file format: {file_extension}")
return f"Unsupported file format: {file_extension}. Please upload a supported audio or video file.", False
logger.info(f"Audio extracted to WAV: {wav_path}")
with open(wav_path, "rb") as audio_file:
transcript = openai.Audio.transcribe("whisper-1", audio_file)
audio_file.seek(0)
diarized_transcript = openai.Audio.transcribe("whisper-1", audio_file, response_format="verbose_json")
formatted_transcript = ""
if 'segments' in diarized_transcript:
for segment in diarized_transcript["segments"]:
speaker = segment.get('speaker', 'Unknown')
text = segment.get('text', '')
formatted_transcript += f"Speaker {speaker}: {text}\n\n"
else:
formatted_transcript = transcript.get('text', 'No transcription available.')
transcription_text = formatted_transcript
generated_file = io.BytesIO(transcription_text.encode())
logger.info("Transcription and diarization completed successfully")
return "Transcription and diarization completed successfully!", True
except Exception as e:
logger.error(f"Error during processing: {str(e)}")
return f"An error occurred: {str(e)}", False
finally:
if temp_file and os.path.exists(temp_file.name):
os.unlink(temp_file.name)
if wav_path and os.path.exists(wav_path):
os.unlink(wav_path)
@app.callback(
[Output('output-media-upload', 'children'),
Output('transcription-status', 'children'),
Output('transcription-preview', 'children'),
Output('btn-download', 'disabled')],
[Input('upload-media', 'contents'),
Input('process-url-button', 'n_clicks')],
[State('upload-media', 'filename'),
State('url-input', 'value')]
)
def update_output(contents, n_clicks, filename, url):
ctx = callback_context
if not ctx.triggered:
return "No file uploaded or URL processed.", "", "", True
# Clear the preview pane
transcription_preview = ""
if contents is not None:
content_type, content_string = contents.split(',')
decoded = base64.b64decode(content_string)
status_message, success = process_media(decoded)
elif url:
status_message, success = process_media(url, is_url=True)
else:
return "No file uploaded or URL processed.", "", "", True
if success:
preview = transcription_text[:1000] + "..." if len(transcription_text) > 1000 else transcription_text
return f"Media processed successfully.", status_message, preview, False
else:
return "Processing failed.", status_message, transcription_preview, True
@app.callback(
Output("download-transcription", "data"),
Input("btn-download", "n_clicks"),
prevent_initial_call=True,
)
def download_transcription(n_clicks):
if n_clicks is None:
return None
return dcc.send_bytes(generated_file.getvalue(), "diarized_transcription.txt")
if __name__ == '__main__':
print("Starting the Dash application...")
app.run(debug=True, host='0.0.0.0', port=7860)
print("Dash application has finished running.") |