bluenevus's picture
Update app.py
f97123b verified
raw
history blame
7.88 kB
import base64
import io
import os
import threading
import tempfile
import logging
import openai
from dash import Dash, dcc, html, Input, Output, State, callback, callback_context
import dash_bootstrap_components as dbc
from pydub import AudioSegment
import requests
import mimetypes
import urllib.parse
import subprocess
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Try to import moviepy with the simpler import statement
try:
from moviepy.editor import VideoFileClip, AudioFileClip
logger.info("MoviePy (VideoFileClip) successfully imported")
except ImportError as e:
logger.error(f"Error importing MoviePy (VideoFileClip): {str(e)}")
logger.error("Please ensure moviepy is installed correctly")
raise
# Supported file formats
AUDIO_FORMATS = ['.wav', '.mp3', '.ogg', '.flac', '.aac', '.m4a', '.wma']
VIDEO_FORMATS = ['.mp4', '.avi', '.mov', '.flv', '.wmv', '.mkv', '.webm']
SUPPORTED_FORMATS = AUDIO_FORMATS + VIDEO_FORMATS
# Initialize the Dash app
app = Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
# Global variables
generated_file = None
transcription_text = ""
# Set up OpenAI API key
openai.api_key = os.getenv("OPENAI_API_KEY")
# Layout
app.layout = dbc.Container([
html.H1("Audio/Video Transcription and Diarization App", className="text-center my-4"),
dbc.Card([
dbc.CardBody([
dcc.Upload(
id='upload-media',
children=html.Div([
'Drag and Drop or ',
html.A('Select Audio/Video File')
]),
style={
'width': '100%',
'height': '60px',
'lineHeight': '60px',
'borderWidth': '1px',
'borderStyle': 'dashed',
'borderRadius': '5px',
'textAlign': 'center',
'margin': '10px'
},
multiple=False
),
html.Div(id='output-media-upload'),
dbc.Input(id="url-input", type="text", placeholder="Enter audio/video URL", className="mb-3"),
dbc.Button("Process Media", id="process-url-button", color="primary", className="mb-3"),
dbc.Spinner(html.Div(id='transcription-status'), color="primary", type="grow"),
html.H4("Diarized Transcription Preview", className="mt-4"),
html.Div(id='transcription-preview', style={'whiteSpace': 'pre-wrap'}),
html.Br(),
dbc.Button("Download Transcription", id="btn-download", color="primary", className="mt-3", disabled=True),
dcc.Download(id="download-transcription")
])
])
], fluid=True)
def chunk_audio(audio_segment, chunk_size_ms=60000):
chunks = []
for i in range(0, len(audio_segment), chunk_size_ms):
chunks.append(audio_segment[i:i+chunk_size_ms])
return chunks
def transcribe_audio_chunks(chunks):
transcriptions = []
for chunk in chunks:
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as temp_audio_file:
chunk.export(temp_audio_file.name, format="wav")
with open(temp_audio_file.name, 'rb') as audio_file:
transcript = openai.Audio.transcribe("whisper-1", audio_file)
transcriptions.append(transcript.get('text', ''))
os.unlink(temp_audio_file.name)
return ' '.join(transcriptions)
def download_file(url):
local_filename = url.split('/')[-1]
with requests.get(url, stream=True) as r:
r.raise_for_status()
with open(local_filename, 'wb') as f:
for chunk in r.iter_content(chunk_size=8192):
f.write(chunk)
return local_filename
def process_media(file_path, is_url=False):
global generated_file, transcription_text
temp_file = None
wav_path = None
try:
if is_url:
logger.info(f"Processing URL: {file_path}")
try:
temp_file = download_file(file_path)
logger.info(f"URL content downloaded: {temp_file}")
except Exception as e:
logger.error(f"Error downloading URL content: {str(e)}")
return f"Error downloading URL content: {str(e)}", False
else:
logger.info("Processing uploaded file")
content_type, content_string = file_path.split(',')
decoded = base64.b64decode(content_string)
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.tmp')
temp_file.write(decoded)
temp_file.close()
temp_file = temp_file.name
logger.info(f"Uploaded file saved: {temp_file}")
# Convert to WAV using ffmpeg
wav_path = tempfile.NamedTemporaryFile(delete=False, suffix='.wav').name
try:
subprocess.run(['ffmpeg', '-i', temp_file, '-acodec', 'pcm_s16le', '-ar', '44100', wav_path], check=True)
logger.info(f"Audio extracted to WAV: {wav_path}")
except subprocess.CalledProcessError as e:
logger.error(f"FFmpeg conversion failed: {str(e)}")
return f"FFmpeg conversion failed: {str(e)}", False
# Chunk the audio file
audio = AudioSegment.from_wav(wav_path)
chunks = chunk_audio(audio)
# Transcribe chunks
transcription = transcribe_audio_chunks(chunks)
# Diarization (simplified as OpenAI doesn't provide speaker diarization)
formatted_transcript = f"Speaker 1: {transcription}"
transcription_text = formatted_transcript
generated_file = io.BytesIO(transcription_text.encode())
logger.info("Transcription and diarization completed successfully")
return "Transcription and diarization completed successfully!", True
except Exception as e:
logger.error(f"Error during processing: {str(e)}")
return f"An error occurred: {str(e)}", False
finally:
if temp_file and os.path.exists(temp_file):
os.unlink(temp_file)
if wav_path and os.path.exists(wav_path):
os.unlink(wav_path)
@app.callback(
[Output('output-media-upload', 'children'),
Output('transcription-status', 'children'),
Output('transcription-preview', 'children'),
Output('btn-download', 'disabled')],
[Input('upload-media', 'contents'),
Input('process-url-button', 'n_clicks')],
[State('upload-media', 'filename'),
State('url-input', 'value')]
)
def update_output(contents, n_clicks, filename, url):
ctx = callback_context
if not ctx.triggered:
return "No file uploaded or URL processed.", "", "", True
# Clear the preview pane
transcription_preview = ""
if contents is not None:
status_message, success = process_media(contents)
elif url:
status_message, success = process_media(url, is_url=True)
else:
return "No file uploaded or URL processed.", "", "", True
if success:
preview = transcription_text[:1000] + "..." if len(transcription_text) > 1000 else transcription_text
return f"Media processed successfully.", status_message, preview, False
else:
return "Processing failed.", status_message, transcription_preview, True
@app.callback(
Output("download-transcription", "data"),
Input("btn-download", "n_clicks"),
prevent_initial_call=True,
)
def download_transcription(n_clicks):
if n_clicks is None:
return None
return dcc.send_bytes(generated_file.getvalue(), "diarized_transcription.txt")
if __name__ == '__main__':
print("Starting the Dash application...")
app.run(debug=True, host='0.0.0.0', port=7860)
print("Dash application has finished running.")