File size: 7,880 Bytes
4e7ec06 1100e65 b09f327 639051f 4e7ec06 7a3a01f bc3b705 110c781 4e7ec06 110c781 6a11fc5 c61e81a 953582f 4e7ec06 ce4312e c8ceed5 7594178 f97123b c8ceed5 ee2cdf3 4288efb 639051f 4e7ec06 82b85b5 4e7ec06 82b85b5 4e7ec06 4ed1e63 4e7ec06 53bdf99 110c781 e99776b 110c781 53bdf99 a123d64 53bdf99 e72ac8d e99776b e72ac8d e99776b e72ac8d f97123b e72ac8d c61e81a 110c781 4e7ec06 4288efb 4e7ec06 110c781 6a11fc5 e72ac8d c61e81a e72ac8d 110c781 6a11fc5 f97123b 4288efb c61e81a 4e7ec06 c61e81a f97123b 1e94ca7 c61e81a 6a11fc5 e72ac8d e99776b 110c781 e72ac8d 110c781 e72ac8d 4e7ec06 110c781 4e7ec06 c61e81a 4288efb b3174ad e99776b 53bdf99 110c781 4e7ec06 110c781 53bdf99 110c781 b8cd6c2 110c781 57c2b38 f97123b 57c2b38 110c781 4e7ec06 57c2b38 4e7ec06 b8cd6c2 53bdf99 26cf8bb 4e7ec06 26cf8bb 4e7ec06 e72ac8d 81f702f 6575bf4 4e7ec06 31b9df5 4e7ec06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
import base64
import io
import os
import threading
import tempfile
import logging
import openai
from dash import Dash, dcc, html, Input, Output, State, callback, callback_context
import dash_bootstrap_components as dbc
from pydub import AudioSegment
import requests
import mimetypes
import urllib.parse
import subprocess
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Try to import moviepy with the simpler import statement
try:
from moviepy.editor import VideoFileClip, AudioFileClip
logger.info("MoviePy (VideoFileClip) successfully imported")
except ImportError as e:
logger.error(f"Error importing MoviePy (VideoFileClip): {str(e)}")
logger.error("Please ensure moviepy is installed correctly")
raise
# Supported file formats
AUDIO_FORMATS = ['.wav', '.mp3', '.ogg', '.flac', '.aac', '.m4a', '.wma']
VIDEO_FORMATS = ['.mp4', '.avi', '.mov', '.flv', '.wmv', '.mkv', '.webm']
SUPPORTED_FORMATS = AUDIO_FORMATS + VIDEO_FORMATS
# Initialize the Dash app
app = Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
# Global variables
generated_file = None
transcription_text = ""
# Set up OpenAI API key
openai.api_key = os.getenv("OPENAI_API_KEY")
# Layout
app.layout = dbc.Container([
html.H1("Audio/Video Transcription and Diarization App", className="text-center my-4"),
dbc.Card([
dbc.CardBody([
dcc.Upload(
id='upload-media',
children=html.Div([
'Drag and Drop or ',
html.A('Select Audio/Video File')
]),
style={
'width': '100%',
'height': '60px',
'lineHeight': '60px',
'borderWidth': '1px',
'borderStyle': 'dashed',
'borderRadius': '5px',
'textAlign': 'center',
'margin': '10px'
},
multiple=False
),
html.Div(id='output-media-upload'),
dbc.Input(id="url-input", type="text", placeholder="Enter audio/video URL", className="mb-3"),
dbc.Button("Process Media", id="process-url-button", color="primary", className="mb-3"),
dbc.Spinner(html.Div(id='transcription-status'), color="primary", type="grow"),
html.H4("Diarized Transcription Preview", className="mt-4"),
html.Div(id='transcription-preview', style={'whiteSpace': 'pre-wrap'}),
html.Br(),
dbc.Button("Download Transcription", id="btn-download", color="primary", className="mt-3", disabled=True),
dcc.Download(id="download-transcription")
])
])
], fluid=True)
def chunk_audio(audio_segment, chunk_size_ms=60000):
chunks = []
for i in range(0, len(audio_segment), chunk_size_ms):
chunks.append(audio_segment[i:i+chunk_size_ms])
return chunks
def transcribe_audio_chunks(chunks):
transcriptions = []
for chunk in chunks:
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as temp_audio_file:
chunk.export(temp_audio_file.name, format="wav")
with open(temp_audio_file.name, 'rb') as audio_file:
transcript = openai.Audio.transcribe("whisper-1", audio_file)
transcriptions.append(transcript.get('text', ''))
os.unlink(temp_audio_file.name)
return ' '.join(transcriptions)
def download_file(url):
local_filename = url.split('/')[-1]
with requests.get(url, stream=True) as r:
r.raise_for_status()
with open(local_filename, 'wb') as f:
for chunk in r.iter_content(chunk_size=8192):
f.write(chunk)
return local_filename
def process_media(file_path, is_url=False):
global generated_file, transcription_text
temp_file = None
wav_path = None
try:
if is_url:
logger.info(f"Processing URL: {file_path}")
try:
temp_file = download_file(file_path)
logger.info(f"URL content downloaded: {temp_file}")
except Exception as e:
logger.error(f"Error downloading URL content: {str(e)}")
return f"Error downloading URL content: {str(e)}", False
else:
logger.info("Processing uploaded file")
content_type, content_string = file_path.split(',')
decoded = base64.b64decode(content_string)
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.tmp')
temp_file.write(decoded)
temp_file.close()
temp_file = temp_file.name
logger.info(f"Uploaded file saved: {temp_file}")
# Convert to WAV using ffmpeg
wav_path = tempfile.NamedTemporaryFile(delete=False, suffix='.wav').name
try:
subprocess.run(['ffmpeg', '-i', temp_file, '-acodec', 'pcm_s16le', '-ar', '44100', wav_path], check=True)
logger.info(f"Audio extracted to WAV: {wav_path}")
except subprocess.CalledProcessError as e:
logger.error(f"FFmpeg conversion failed: {str(e)}")
return f"FFmpeg conversion failed: {str(e)}", False
# Chunk the audio file
audio = AudioSegment.from_wav(wav_path)
chunks = chunk_audio(audio)
# Transcribe chunks
transcription = transcribe_audio_chunks(chunks)
# Diarization (simplified as OpenAI doesn't provide speaker diarization)
formatted_transcript = f"Speaker 1: {transcription}"
transcription_text = formatted_transcript
generated_file = io.BytesIO(transcription_text.encode())
logger.info("Transcription and diarization completed successfully")
return "Transcription and diarization completed successfully!", True
except Exception as e:
logger.error(f"Error during processing: {str(e)}")
return f"An error occurred: {str(e)}", False
finally:
if temp_file and os.path.exists(temp_file):
os.unlink(temp_file)
if wav_path and os.path.exists(wav_path):
os.unlink(wav_path)
@app.callback(
[Output('output-media-upload', 'children'),
Output('transcription-status', 'children'),
Output('transcription-preview', 'children'),
Output('btn-download', 'disabled')],
[Input('upload-media', 'contents'),
Input('process-url-button', 'n_clicks')],
[State('upload-media', 'filename'),
State('url-input', 'value')]
)
def update_output(contents, n_clicks, filename, url):
ctx = callback_context
if not ctx.triggered:
return "No file uploaded or URL processed.", "", "", True
# Clear the preview pane
transcription_preview = ""
if contents is not None:
status_message, success = process_media(contents)
elif url:
status_message, success = process_media(url, is_url=True)
else:
return "No file uploaded or URL processed.", "", "", True
if success:
preview = transcription_text[:1000] + "..." if len(transcription_text) > 1000 else transcription_text
return f"Media processed successfully.", status_message, preview, False
else:
return "Processing failed.", status_message, transcription_preview, True
@app.callback(
Output("download-transcription", "data"),
Input("btn-download", "n_clicks"),
prevent_initial_call=True,
)
def download_transcription(n_clicks):
if n_clicks is None:
return None
return dcc.send_bytes(generated_file.getvalue(), "diarized_transcription.txt")
if __name__ == '__main__':
print("Starting the Dash application...")
app.run(debug=True, host='0.0.0.0', port=7860)
print("Dash application has finished running.") |