Update app.py
Browse files
app.py
CHANGED
@@ -11,6 +11,10 @@ from spellchecker import SpellChecker
|
|
11 |
from pydub import AudioSegment
|
12 |
import librosa
|
13 |
import numpy as np
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# Check if CUDA is available and set the device
|
16 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -70,27 +74,35 @@ def format_transcript(transcript):
|
|
70 |
|
71 |
def transcribe_audio(audio_file):
|
72 |
try:
|
73 |
-
#
|
|
|
|
|
|
|
74 |
audio_input, sr = librosa.load(audio_file, sr=16000)
|
75 |
|
76 |
# Convert to float32 numpy array
|
77 |
audio_input = audio_input.astype(np.float32)
|
78 |
|
79 |
-
# Process in chunks of 30 seconds with overlap
|
80 |
-
chunk_length = 30 * sr
|
81 |
-
overlap = 5 * sr # 5 seconds overlap
|
82 |
transcriptions = []
|
|
|
83 |
|
84 |
-
for
|
85 |
-
|
|
|
|
|
|
|
86 |
input_features = processor(chunk, sampling_rate=16000, return_tensors="pt").input_features.to(device)
|
87 |
predicted_ids = model.generate(input_features)
|
88 |
-
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
-
# Join all transcriptions
|
92 |
full_transcription = " ".join(transcriptions)
|
93 |
-
|
94 |
print(f"Full transcription length: {len(full_transcription)} characters")
|
95 |
return full_transcription
|
96 |
except Exception as e:
|
|
|
11 |
from pydub import AudioSegment
|
12 |
import librosa
|
13 |
import numpy as np
|
14 |
+
from pyannote.audio import Pipeline
|
15 |
+
|
16 |
+
# Initialize the speaker diarization pipeline
|
17 |
+
pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization")
|
18 |
|
19 |
# Check if CUDA is available and set the device
|
20 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
74 |
|
75 |
def transcribe_audio(audio_file):
|
76 |
try:
|
77 |
+
# Perform speaker diarization
|
78 |
+
diarization = pipeline(audio_file)
|
79 |
+
|
80 |
+
# Load the audio file
|
81 |
audio_input, sr = librosa.load(audio_file, sr=16000)
|
82 |
|
83 |
# Convert to float32 numpy array
|
84 |
audio_input = audio_input.astype(np.float32)
|
85 |
|
|
|
|
|
|
|
86 |
transcriptions = []
|
87 |
+
current_speaker = None
|
88 |
|
89 |
+
for turn, _, speaker in diarization.itertracks(yield_label=True):
|
90 |
+
start_sample = int(turn.start * sr)
|
91 |
+
end_sample = int(turn.end * sr)
|
92 |
+
|
93 |
+
chunk = audio_input[start_sample:end_sample]
|
94 |
input_features = processor(chunk, sampling_rate=16000, return_tensors="pt").input_features.to(device)
|
95 |
predicted_ids = model.generate(input_features)
|
96 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
97 |
+
|
98 |
+
if speaker != current_speaker:
|
99 |
+
if current_speaker is not None:
|
100 |
+
transcriptions.append("\n\n") # Add line break for new speaker
|
101 |
+
current_speaker = speaker
|
102 |
+
|
103 |
+
transcriptions.append(f"Speaker {speaker}: {transcription}")
|
104 |
|
|
|
105 |
full_transcription = " ".join(transcriptions)
|
|
|
106 |
print(f"Full transcription length: {len(full_transcription)} characters")
|
107 |
return full_transcription
|
108 |
except Exception as e:
|