Update app.py
Browse files
app.py
CHANGED
@@ -76,11 +76,12 @@ def transcribe_audio(audio_file):
|
|
76 |
# Convert to float32 numpy array
|
77 |
audio_input = audio_input.astype(np.float32)
|
78 |
|
79 |
-
# Process in chunks of 30 seconds
|
80 |
chunk_length = 30 * sr
|
|
|
81 |
transcriptions = []
|
82 |
|
83 |
-
for i in range(0, len(audio_input), chunk_length):
|
84 |
chunk = audio_input[i:i+chunk_length]
|
85 |
input_features = processor(chunk, sampling_rate=16000, return_tensors="pt").input_features.to(device)
|
86 |
predicted_ids = model.generate(input_features)
|
@@ -90,6 +91,7 @@ def transcribe_audio(audio_file):
|
|
90 |
# Join all transcriptions
|
91 |
full_transcription = " ".join(transcriptions)
|
92 |
|
|
|
93 |
return full_transcription
|
94 |
except Exception as e:
|
95 |
print(f"Error in transcribe_audio: {str(e)}")
|
@@ -104,6 +106,8 @@ def transcribe_video(url):
|
|
104 |
# Convert audio bytes to AudioSegment
|
105 |
audio = AudioSegment.from_file(io.BytesIO(audio_bytes))
|
106 |
|
|
|
|
|
107 |
# Save as WAV file
|
108 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio:
|
109 |
audio.export(temp_audio.name, format="wav")
|
@@ -111,7 +115,7 @@ def transcribe_video(url):
|
|
111 |
|
112 |
print("Starting audio transcription...")
|
113 |
transcript = transcribe_audio(temp_audio_path)
|
114 |
-
print("Transcription completed
|
115 |
|
116 |
# Clean up the temporary file
|
117 |
os.unlink(temp_audio_path)
|
@@ -123,6 +127,8 @@ def transcribe_video(url):
|
|
123 |
return transcript
|
124 |
except Exception as e:
|
125 |
error_message = f"An error occurred: {str(e)}"
|
|
|
|
|
126 |
|
127 |
def download_transcript(transcript):
|
128 |
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.txt') as temp_file:
|
|
|
76 |
# Convert to float32 numpy array
|
77 |
audio_input = audio_input.astype(np.float32)
|
78 |
|
79 |
+
# Process in chunks of 30 seconds with overlap
|
80 |
chunk_length = 30 * sr
|
81 |
+
overlap = 5 * sr # 5 seconds overlap
|
82 |
transcriptions = []
|
83 |
|
84 |
+
for i in range(0, len(audio_input), chunk_length - overlap):
|
85 |
chunk = audio_input[i:i+chunk_length]
|
86 |
input_features = processor(chunk, sampling_rate=16000, return_tensors="pt").input_features.to(device)
|
87 |
predicted_ids = model.generate(input_features)
|
|
|
91 |
# Join all transcriptions
|
92 |
full_transcription = " ".join(transcriptions)
|
93 |
|
94 |
+
print(f"Full transcription length: {len(full_transcription)} characters")
|
95 |
return full_transcription
|
96 |
except Exception as e:
|
97 |
print(f"Error in transcribe_audio: {str(e)}")
|
|
|
106 |
# Convert audio bytes to AudioSegment
|
107 |
audio = AudioSegment.from_file(io.BytesIO(audio_bytes))
|
108 |
|
109 |
+
print(f"Audio duration: {len(audio) / 1000} seconds")
|
110 |
+
|
111 |
# Save as WAV file
|
112 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio:
|
113 |
audio.export(temp_audio.name, format="wav")
|
|
|
115 |
|
116 |
print("Starting audio transcription...")
|
117 |
transcript = transcribe_audio(temp_audio_path)
|
118 |
+
print(f"Transcription completed. Transcript length: {len(transcript)} characters")
|
119 |
|
120 |
# Clean up the temporary file
|
121 |
os.unlink(temp_audio_path)
|
|
|
127 |
return transcript
|
128 |
except Exception as e:
|
129 |
error_message = f"An error occurred: {str(e)}"
|
130 |
+
print(error_message)
|
131 |
+
return error_message
|
132 |
|
133 |
def download_transcript(transcript):
|
134 |
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.txt') as temp_file:
|