bluenevus commited on
Commit
9a1f744
·
verified ·
1 Parent(s): da7b836

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +112 -1
app.py CHANGED
@@ -29,7 +29,118 @@ qwen_model_name = "Qwen/Qwen2.5-3B-Instruct"
29
  qwen_tokenizer = AutoTokenizer.from_pretrained(qwen_model_name, trust_remote_code=True)
30
  qwen_model = AutoModelForCausalLM.from_pretrained(qwen_model_name, trust_remote_code=True).to(device)
31
 
32
- # ... (keep all the existing functions as they are)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
  app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
35
 
 
29
  qwen_tokenizer = AutoTokenizer.from_pretrained(qwen_model_name, trust_remote_code=True)
30
  qwen_model = AutoModelForCausalLM.from_pretrained(qwen_model_name, trust_remote_code=True).to(device)
31
 
32
+ def download_audio_from_url(url):
33
+ try:
34
+ if "youtube.com" in url or "youtu.be" in url:
35
+ print("Processing YouTube URL...")
36
+ yt = YouTube(url)
37
+ audio_stream = yt.streams.filter(only_audio=True).first()
38
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_file:
39
+ audio_stream.download(output_path=temp_file.name)
40
+ audio_bytes = open(temp_file.name, "rb").read()
41
+ os.unlink(temp_file.name)
42
+ elif "share" in url:
43
+ print("Processing shareable link...")
44
+ response = requests.get(url)
45
+ soup = BeautifulSoup(response.content, 'html.parser')
46
+ video_tag = soup.find('video')
47
+ if video_tag and 'src' in video_tag.attrs:
48
+ video_url = video_tag['src']
49
+ print(f"Extracted video URL: {video_url}")
50
+ else:
51
+ raise ValueError("Direct video URL not found in the shareable link.")
52
+ response = requests.get(video_url)
53
+ audio_bytes = response.content
54
+ else:
55
+ print(f"Downloading video from URL: {url}")
56
+ response = requests.get(url)
57
+ audio_bytes = response.content
58
+
59
+ print(f"Successfully downloaded {len(audio_bytes)} bytes of data")
60
+ return audio_bytes
61
+ except Exception as e:
62
+ print(f"Error in download_audio_from_url: {str(e)}")
63
+ raise
64
+
65
+ def transcribe_audio(audio_file):
66
+ try:
67
+ print("Loading audio file...")
68
+ audio = AudioSegment.from_file(audio_file)
69
+ audio = audio.set_channels(1).set_frame_rate(16000)
70
+ audio_array = torch.tensor(audio.get_array_of_samples()).float()
71
+
72
+ print(f"Audio duration: {len(audio) / 1000:.2f} seconds")
73
+ print("Starting transcription...")
74
+ input_features = whisper_processor(audio_array, sampling_rate=16000, return_tensors="pt").input_features.to(device)
75
+
76
+ # Create attention mask
77
+ attention_mask = torch.ones_like(input_features)
78
+
79
+ # Generate with specific parameters
80
+ predicted_ids = whisper_model.generate(
81
+ input_features,
82
+ attention_mask=attention_mask,
83
+ language='en',
84
+ task='translate'
85
+ )
86
+ transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)
87
+
88
+ print(f"Transcription complete. Length: {len(transcription[0])} characters")
89
+ if len(transcription[0]) < 10:
90
+ raise ValueError(f"Transcription too short: {transcription[0]}")
91
+ return transcription[0]
92
+ except Exception as e:
93
+ print(f"Error in transcribe_audio: {str(e)}")
94
+ raise
95
+
96
+ def separate_speakers(transcription):
97
+ print("Starting speaker separation...")
98
+ prompt = f"""Analyze the following transcribed text and separate it into different speakers. Identify potential speaker changes based on context, content shifts, or dialogue patterns. Format the output as follows:
99
+
100
+ 1. Label speakers as "Speaker 1", "Speaker 2", etc.
101
+ 2. Start each speaker's text on a new line beginning with their label.
102
+ 3. Separate different speakers' contributions with a blank line.
103
+ 4. If the same speaker continues, do not insert a blank line or repeat the speaker label.
104
+
105
+ Now, please process the following transcribed text:
106
+
107
+ {transcription}
108
+ """
109
+
110
+ inputs = qwen_tokenizer(prompt, return_tensors="pt").to(device)
111
+ with torch.no_grad():
112
+ outputs = qwen_model.generate(**inputs, max_new_tokens=4000)
113
+ result = qwen_tokenizer.decode(outputs[0], skip_special_tokens=True)
114
+
115
+ # Extract the processed text (remove the instruction part)
116
+ processed_text = result.split("Now, please process the following transcribed text:")[-1].strip()
117
+
118
+ print("Speaker separation complete.")
119
+ return processed_text
120
+
121
+ def transcribe_video(url):
122
+ try:
123
+ print(f"Attempting to download audio from URL: {url}")
124
+ audio_bytes = download_audio_from_url(url)
125
+ print(f"Successfully downloaded {len(audio_bytes)} bytes of audio data")
126
+
127
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio:
128
+ AudioSegment.from_file(io.BytesIO(audio_bytes)).export(temp_audio.name, format="wav")
129
+ transcript = transcribe_audio(temp_audio.name)
130
+
131
+ os.unlink(temp_audio.name)
132
+
133
+ if len(transcript) < 10:
134
+ raise ValueError("Transcription too short, possibly failed")
135
+
136
+ print("Separating speakers...")
137
+ separated_transcript = separate_speakers(transcript)
138
+
139
+ return separated_transcript
140
+ except Exception as e:
141
+ error_message = f"An error occurred: {str(e)}"
142
+ print(error_message)
143
+ return error_message
144
 
145
  app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
146