Update app.py
Browse files
app.py
CHANGED
@@ -29,118 +29,7 @@ qwen_model_name = "Qwen/Qwen2.5-3B-Instruct"
|
|
29 |
qwen_tokenizer = AutoTokenizer.from_pretrained(qwen_model_name, trust_remote_code=True)
|
30 |
qwen_model = AutoModelForCausalLM.from_pretrained(qwen_model_name, trust_remote_code=True).to(device)
|
31 |
|
32 |
-
|
33 |
-
try:
|
34 |
-
if "youtube.com" in url or "youtu.be" in url:
|
35 |
-
print("Processing YouTube URL...")
|
36 |
-
yt = YouTube(url)
|
37 |
-
audio_stream = yt.streams.filter(only_audio=True).first()
|
38 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_file:
|
39 |
-
audio_stream.download(output_path=temp_file.name)
|
40 |
-
audio_bytes = open(temp_file.name, "rb").read()
|
41 |
-
os.unlink(temp_file.name)
|
42 |
-
elif "share" in url:
|
43 |
-
print("Processing shareable link...")
|
44 |
-
response = requests.get(url)
|
45 |
-
soup = BeautifulSoup(response.content, 'html.parser')
|
46 |
-
video_tag = soup.find('video')
|
47 |
-
if video_tag and 'src' in video_tag.attrs:
|
48 |
-
video_url = video_tag['src']
|
49 |
-
print(f"Extracted video URL: {video_url}")
|
50 |
-
else:
|
51 |
-
raise ValueError("Direct video URL not found in the shareable link.")
|
52 |
-
response = requests.get(video_url)
|
53 |
-
audio_bytes = response.content
|
54 |
-
else:
|
55 |
-
print(f"Downloading video from URL: {url}")
|
56 |
-
response = requests.get(url)
|
57 |
-
audio_bytes = response.content
|
58 |
-
|
59 |
-
print(f"Successfully downloaded {len(audio_bytes)} bytes of data")
|
60 |
-
return audio_bytes
|
61 |
-
except Exception as e:
|
62 |
-
print(f"Error in download_audio_from_url: {str(e)}")
|
63 |
-
raise
|
64 |
-
|
65 |
-
def transcribe_audio(audio_file):
|
66 |
-
try:
|
67 |
-
print("Loading audio file...")
|
68 |
-
audio = AudioSegment.from_file(audio_file)
|
69 |
-
audio = audio.set_channels(1).set_frame_rate(16000)
|
70 |
-
audio_array = torch.tensor(audio.get_array_of_samples()).float()
|
71 |
-
|
72 |
-
print(f"Audio duration: {len(audio) / 1000:.2f} seconds")
|
73 |
-
print("Starting transcription...")
|
74 |
-
input_features = whisper_processor(audio_array, sampling_rate=16000, return_tensors="pt").input_features.to(device)
|
75 |
-
|
76 |
-
# Create attention mask
|
77 |
-
attention_mask = torch.ones_like(input_features)
|
78 |
-
|
79 |
-
# Generate with specific parameters
|
80 |
-
predicted_ids = whisper_model.generate(
|
81 |
-
input_features,
|
82 |
-
attention_mask=attention_mask,
|
83 |
-
language='en',
|
84 |
-
task='translate'
|
85 |
-
)
|
86 |
-
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
87 |
-
|
88 |
-
print(f"Transcription complete. Length: {len(transcription[0])} characters")
|
89 |
-
if len(transcription[0]) < 10:
|
90 |
-
raise ValueError(f"Transcription too short: {transcription[0]}")
|
91 |
-
return transcription[0]
|
92 |
-
except Exception as e:
|
93 |
-
print(f"Error in transcribe_audio: {str(e)}")
|
94 |
-
raise
|
95 |
-
|
96 |
-
def separate_speakers(transcription):
|
97 |
-
print("Starting speaker separation...")
|
98 |
-
prompt = f"""Analyze the following transcribed text and separate it into different speakers. Identify potential speaker changes based on context, content shifts, or dialogue patterns. Format the output as follows:
|
99 |
-
|
100 |
-
1. Label speakers as "Speaker 1", "Speaker 2", etc.
|
101 |
-
2. Start each speaker's text on a new line beginning with their label.
|
102 |
-
3. Separate different speakers' contributions with a blank line.
|
103 |
-
4. If the same speaker continues, do not insert a blank line or repeat the speaker label.
|
104 |
-
|
105 |
-
Now, please process the following transcribed text:
|
106 |
-
|
107 |
-
{transcription}
|
108 |
-
"""
|
109 |
-
|
110 |
-
inputs = qwen_tokenizer(prompt, return_tensors="pt").to(device)
|
111 |
-
with torch.no_grad():
|
112 |
-
outputs = qwen_model.generate(**inputs, max_new_tokens=4000)
|
113 |
-
result = qwen_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
114 |
-
|
115 |
-
# Extract the processed text (remove the instruction part)
|
116 |
-
processed_text = result.split("Now, please process the following transcribed text:")[-1].strip()
|
117 |
-
|
118 |
-
print("Speaker separation complete.")
|
119 |
-
return processed_text
|
120 |
-
|
121 |
-
def transcribe_video(url):
|
122 |
-
try:
|
123 |
-
print(f"Attempting to download audio from URL: {url}")
|
124 |
-
audio_bytes = download_audio_from_url(url)
|
125 |
-
print(f"Successfully downloaded {len(audio_bytes)} bytes of audio data")
|
126 |
-
|
127 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio:
|
128 |
-
AudioSegment.from_file(io.BytesIO(audio_bytes)).export(temp_audio.name, format="wav")
|
129 |
-
transcript = transcribe_audio(temp_audio.name)
|
130 |
-
|
131 |
-
os.unlink(temp_audio.name)
|
132 |
-
|
133 |
-
if len(transcript) < 10:
|
134 |
-
raise ValueError("Transcription too short, possibly failed")
|
135 |
-
|
136 |
-
print("Separating speakers...")
|
137 |
-
separated_transcript = separate_speakers(transcript)
|
138 |
-
|
139 |
-
return separated_transcript
|
140 |
-
except Exception as e:
|
141 |
-
error_message = f"An error occurred: {str(e)}"
|
142 |
-
print(error_message)
|
143 |
-
return error_message
|
144 |
|
145 |
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
|
146 |
|
@@ -190,7 +79,7 @@ def update_transcription(n_clicks, url):
|
|
190 |
if thread.is_alive():
|
191 |
return "Transcription timed out after 10 minutes", {'display': 'none'}
|
192 |
|
193 |
-
transcript =
|
194 |
|
195 |
if transcript and not transcript.startswith("An error occurred"):
|
196 |
return dbc.Card([
|
@@ -217,5 +106,5 @@ def download_transcript(n_clicks, transcription_output):
|
|
217 |
|
218 |
if __name__ == '__main__':
|
219 |
print("Starting the Dash application...")
|
220 |
-
app.
|
221 |
print("Dash application has finished running.")
|
|
|
29 |
qwen_tokenizer = AutoTokenizer.from_pretrained(qwen_model_name, trust_remote_code=True)
|
30 |
qwen_model = AutoModelForCausalLM.from_pretrained(qwen_model_name, trust_remote_code=True).to(device)
|
31 |
|
32 |
+
# ... (keep all the existing functions as they are)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
|
35 |
|
|
|
79 |
if thread.is_alive():
|
80 |
return "Transcription timed out after 10 minutes", {'display': 'none'}
|
81 |
|
82 |
+
transcript = getattr(thread, 'result', "Transcription failed")
|
83 |
|
84 |
if transcript and not transcript.startswith("An error occurred"):
|
85 |
return dbc.Card([
|
|
|
106 |
|
107 |
if __name__ == '__main__':
|
108 |
print("Starting the Dash application...")
|
109 |
+
app.run_server(debug=True, host='0.0.0.0', port=7860)
|
110 |
print("Dash application has finished running.")
|