bluenevus's picture
Update app.py
33f9554 verified
raw
history blame
4.83 kB
import gradio as gr
import google.generativeai as genai
import numpy as np
import re
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import snapshot_download, login
import logging
import os
import spaces
import warnings
from snac import SNAC
from dotenv import load_dotenv
load_dotenv()
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Suppress specific warnings
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=RuntimeWarning)
def get_device():
return "cuda" if torch.cuda.is_available() else "cpu"
device = get_device()
logger.info(f"Using device: {device}")
model = None
tokenizer = None
snac_model = None
@spaces.GPU()
def load_model():
global model, tokenizer, snac_model
logger.info("Loading SNAC model...")
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
snac_model = snac_model.to(device)
logger.info("Loading Orpheus model...")
model_name = "canopylabs/orpheus-3b-0.1-ft"
hf_token = os.environ.get("HUGGINGFACE_TOKEN")
if not hf_token:
raise ValueError("HUGGINGFACE_TOKEN environment variable is not set")
try:
login(token=hf_token)
snapshot_download(
repo_id=model_name,
use_auth_token=hf_token,
allow_patterns=[
"config.json",
"*.safetensors",
"model.safetensors.index.json",
],
ignore_patterns=[
"optimizer.pt",
"pytorch_model.bin",
"training_args.bin",
"scheduler.pt",
"tokenizer.json",
"tokenizer_config.json",
"special_tokens_map.json",
"vocab.json",
"merges.txt",
"tokenizer.*"
]
)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
model.to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name)
logger.info(f"Orpheus model and tokenizer loaded to {device}")
except Exception as e:
logger.error(f"Error loading model: {str(e)}")
raise
@spaces.GPU()
def text_to_speech(text, voice, temperature=0.6, top_p=0.95, repetition_penalty=1.1, max_new_tokens=1200):
global model, tokenizer, snac_model
if model is None or tokenizer is None or snac_model is None:
load_model()
if not text.strip():
return None
try:
input_ids, attention_mask = process_prompt(text, voice, tokenizer, device)
with torch.no_grad():
generated_ids = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
num_return_sequences=1,
eos_token_id=128258,
)
code_list = parse_output(generated_ids)
audio_samples = redistribute_codes(code_list, snac_model)
return (24000, audio_samples) # Return sample rate and audio
except Exception as e:
logger.error(f"Error in text_to_speech: {str(e)}")
raise
@spaces.GPU()
def render_podcast(api_key, script, voice1, voice2, num_hosts):
try:
lines = [line for line in script.split('\n') if line.strip()]
audio_segments = []
for i, line in enumerate(lines):
voice = voice1 if num_hosts == 1 or i % 2 == 0 else voice2
try:
sample_rate, audio = text_to_speech(line, voice)
audio_segments.append(audio)
except Exception as e:
logger.error(f"Error processing audio segment: {str(e)}")
if not audio_segments:
logger.warning("No valid audio segments were generated.")
return (24000, np.zeros(24000, dtype=np.float32))
podcast_audio = np.concatenate(audio_segments)
# Ensure the audio is in the correct format for Gradio
podcast_audio = np.clip(podcast_audio, -1, 1)
podcast_audio = (podcast_audio * 32767).astype(np.int16)
return (24000, podcast_audio)
except Exception as e:
logger.error(f"Error rendering podcast: {str(e)}")
raise
# ... (rest of the code remains the same)
if __name__ == "__main__":
try:
load_model() # Load models at startup
demo.launch()
except Exception as e:
logger.error(f"Error launching the application: {str(e)}")