File size: 4,833 Bytes
74245b5
b8d465b
 
 
97778aa
 
031a7f3
b8d465b
48ade8d
896ca54
310ebea
db5919c
 
 
 
07cb903
5753bc2
 
b8d465b
 
310ebea
aa10e55
 
310ebea
54be90e
db5919c
97778aa
54be90e
5753bc2
b66d512
 
 
db5919c
b66d512
896ca54
3c8678d
db5919c
 
 
 
 
1668d21
5753bc2
1668d21
 
3c8678d
 
 
 
5753bc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db5919c
5753bc2
 
 
 
 
 
 
896ca54
db5919c
 
33f9554
 
 
db5919c
 
 
5753bc2
db5919c
5753bc2
 
db5919c
 
 
 
 
 
 
 
 
 
 
c10cafd
db5919c
 
aa10e55
db5919c
5753bc2
 
 
db5919c
896ca54
97778aa
5753bc2
 
 
 
 
 
 
db5919c
5753bc2
 
 
 
 
 
 
 
 
310ebea
 
 
 
 
5753bc2
 
 
 
b8d465b
33f9554
74245b5
a727789
5753bc2
33f9554
5753bc2
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import gradio as gr
import google.generativeai as genai
import numpy as np
import re
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import snapshot_download, login
import logging
import os
import spaces
import warnings
from snac import SNAC
from dotenv import load_dotenv

load_dotenv()

# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Suppress specific warnings
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=RuntimeWarning)

def get_device():
    return "cuda" if torch.cuda.is_available() else "cpu"

device = get_device()
logger.info(f"Using device: {device}")

model = None
tokenizer = None
snac_model = None

@spaces.GPU()
def load_model():
    global model, tokenizer, snac_model
    
    logger.info("Loading SNAC model...")
    snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
    snac_model = snac_model.to(device)
    
    logger.info("Loading Orpheus model...")
    model_name = "canopylabs/orpheus-3b-0.1-ft"

    hf_token = os.environ.get("HUGGINGFACE_TOKEN")
    if not hf_token:
        raise ValueError("HUGGINGFACE_TOKEN environment variable is not set")

    try:
        login(token=hf_token)

        snapshot_download(
            repo_id=model_name,
            use_auth_token=hf_token,
            allow_patterns=[
                "config.json",
                "*.safetensors",
                "model.safetensors.index.json",
            ],
            ignore_patterns=[
                "optimizer.pt",
                "pytorch_model.bin",
                "training_args.bin",
                "scheduler.pt",
                "tokenizer.json",
                "tokenizer_config.json",
                "special_tokens_map.json",
                "vocab.json",
                "merges.txt",
                "tokenizer.*"
            ]
        )

        model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
        model.to(device)
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        logger.info(f"Orpheus model and tokenizer loaded to {device}")
    except Exception as e:
        logger.error(f"Error loading model: {str(e)}")
        raise

@spaces.GPU()
def text_to_speech(text, voice, temperature=0.6, top_p=0.95, repetition_penalty=1.1, max_new_tokens=1200):
    global model, tokenizer, snac_model
    if model is None or tokenizer is None or snac_model is None:
        load_model()
    
    if not text.strip():
        return None
    
    try:
        input_ids, attention_mask = process_prompt(text, voice, tokenizer, device)
        
        with torch.no_grad():
            generated_ids = model.generate(
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_new_tokens=max_new_tokens,
                do_sample=True,
                temperature=temperature,
                top_p=top_p,
                repetition_penalty=repetition_penalty,
                num_return_sequences=1,
                eos_token_id=128258,
            )
        
        code_list = parse_output(generated_ids)
        audio_samples = redistribute_codes(code_list, snac_model)
        
        return (24000, audio_samples)  # Return sample rate and audio
    except Exception as e:
        logger.error(f"Error in text_to_speech: {str(e)}")
        raise

@spaces.GPU()
def render_podcast(api_key, script, voice1, voice2, num_hosts):
    try:
        lines = [line for line in script.split('\n') if line.strip()]
        audio_segments = []

        for i, line in enumerate(lines):
            voice = voice1 if num_hosts == 1 or i % 2 == 0 else voice2
            try:
                sample_rate, audio = text_to_speech(line, voice)
                audio_segments.append(audio)
            except Exception as e:
                logger.error(f"Error processing audio segment: {str(e)}")

        if not audio_segments:
            logger.warning("No valid audio segments were generated.")
            return (24000, np.zeros(24000, dtype=np.float32))

        podcast_audio = np.concatenate(audio_segments)
        
        # Ensure the audio is in the correct format for Gradio
        podcast_audio = np.clip(podcast_audio, -1, 1)
        podcast_audio = (podcast_audio * 32767).astype(np.int16)
        
        return (24000, podcast_audio)
    except Exception as e:
        logger.error(f"Error rendering podcast: {str(e)}")
        raise

# ... (rest of the code remains the same)

if __name__ == "__main__":
    try:
        load_model()  # Load models at startup
        demo.launch()
    except Exception as e:
        logger.error(f"Error launching the application: {str(e)}")