Spaces:
Running
Running
import numpy as np | |
from pathlib import Path | |
from PIL import Image | |
import torch | |
from torch.utils.data import Dataset | |
import torchvision.transforms as T | |
from transformers import CLIPImageProcessor | |
import sys | |
sys.path.append("/path/to/FollowYourEmoji") | |
from media_pipe import FaceMeshDetector, FaceMeshAlign | |
from media_pipe.draw_util import FaceMeshVisualizer | |
def val_collate_fn(samples): | |
return { | |
'ref_frame': [sample['ref_frame'] for sample in samples], | |
'clip_image': [sample['clip_image'] for sample in samples], | |
'motions': [sample['motions'] for sample in samples], | |
'file_name': [sample['file_name'] for sample in samples], | |
'lmk_name': [sample['lmk_name'] for sample in samples], | |
} | |
class ValDataset(Dataset): | |
def __init__(self, input_path, lmk_path, resolution_w=512, resolution_h=512): | |
print(f'Loading dataset from {input_path} and {lmk_path}') | |
all_img_paths = self._get_path_files(Path(input_path), file_suffix=['.jpg', '.jpeg', '.png', '.webp']) | |
all_lmk_paths = self._get_path_files(Path(lmk_path), file_suffix=['.npy']) | |
print(f'Found {len(all_img_paths)} image files and {len(all_lmk_paths)} lmk files') | |
print(f"ALL IMG PATH: {all_img_paths}") | |
print(f"ALL LKM PATH: {all_lmk_paths}") | |
self.all_paths = [] | |
for lmk_path in all_lmk_paths: | |
for img_path in all_img_paths: | |
self.all_paths.append((img_path, lmk_path)) | |
self.W = resolution_w | |
self.H = resolution_h | |
self.to_tensor = T.ToTensor() | |
self.detector = FaceMeshDetector() | |
self.aligner = FaceMeshAlign() | |
self.clip_image_processor = CLIPImageProcessor() | |
self.vis = FaceMeshVisualizer(forehead_edge=False, iris_edge=False, iris_point=True) | |
def __len__(self): | |
return len(self.all_paths) | |
def _get_path_files(self, path, file_suffix): | |
all_paths = [] | |
if path.is_file(): | |
if path.suffix.lower() in file_suffix: | |
all_paths = [path] | |
else: | |
raise ValueError('Path is not valid image file.') | |
elif path.is_dir(): | |
all_paths = sorted( | |
[ | |
f | |
for f in path.iterdir() | |
if f.is_file() and f.suffix.lower() in file_suffix | |
] | |
) | |
if len(all_paths) == 0: | |
raise ValueError('Folder does not contain any images.') | |
else: | |
raise ValueError | |
return all_paths | |
def get_align_motion(self, ref_lmk, temp_lmks): | |
motions = self.aligner(ref_lmk, temp_lmks) | |
motions = [self.to_tensor(motion) for motion in motions] | |
motions = torch.stack(motions).permute((1,0,2,3)) | |
return motions | |
def __getitem__(self, index): | |
img_path, lmk_path = self.all_paths[index] | |
W, H = self.W, self.H | |
image = Image.open(img_path).convert('RGB') | |
# resize and center crop | |
scale = min(W / image.size[0], H / image.size[1]) | |
ref_image = image.resize( | |
(int(image.size[0] * scale), int(image.size[1] * scale))) | |
w, h = ref_image.size[0], ref_image.size[1] | |
ref_image = ref_image.crop((w//2-W//2, h//2-H//2, w//2+W//2, h//2+H//2)) | |
ref_image = np.array(ref_image) | |
# reference image lmk | |
ref_lmk_image, ref_lmk = self.detector(ref_image) | |
# clip image | |
clip_image = Image.fromarray(np.array(ref_image)) | |
clip_image = self.clip_image_processor(images=clip_image, return_tensors="pt").pixel_values[0] | |
# reference image | |
ref_image = self.to_tensor(ref_image).unsqueeze(1) | |
ref_image = ref_image * 2.0 - 1.0 | |
# motion sequence | |
temp_lmks = np.load(lmk_path, allow_pickle=True) | |
# landmark align and draw motions | |
if ref_lmk is not None: | |
motions = self.get_align_motion(ref_lmk, temp_lmks) | |
else: | |
motions = [ | |
self.vis.draw_landmarks((H, W), lmk['lmks'].astype(np.float32), normed=True) | |
for lmk in temp_lmks | |
] | |
motions = [self.to_tensor(motion) for motion in motions] | |
motions = torch.stack(motions).permute((1,0,2,3)) | |
example = dict() | |
example["file_name"] = str(img_path.stem).split('/')[-1] | |
example["lmk_name"] = str(lmk_path.stem).split('/')[-1] | |
example["motions"] = motions # value in [0, 1] | |
example["ref_frame"] = ref_image # value in [-1, 1] | |
example["ref_lmk_image"] = ref_lmk_image | |
example["clip_image"] = clip_image | |
return example | |