Follow-Your-Emoji / infer_script.py
boheng.xie
upload infer_script file
35cad43
import os
import imageio
import numpy as np
from PIL import Image
import cv2
from omegaconf import OmegaConf
from skimage.metrics import structural_similarity as ssim
from collections import deque
import torch
import gc
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.utils.import_utils import is_xformers_available
from transformers import CLIPVisionModelWithProjection
from models.guider import Guider
from models.referencenet import ReferenceNet2DConditionModel
from models.unet import UNet3DConditionModel
from models.video_pipeline import VideoPipeline
from dataset.val_dataset import ValDataset, val_collate_fn
def load_model_state_dict(model, model_ckpt_path, name):
ckpt = torch.load(model_ckpt_path, map_location="cpu")
model_state_dict = model.state_dict()
model_new_sd = {}
count = 0
for k, v in ckpt.items():
if k in model_state_dict:
count += 1
model_new_sd[k] = v
miss, _ = model.load_state_dict(model_new_sd, strict=False)
print(f'load {name} from {model_ckpt_path}\n - load params: {count}\n - miss params: {miss}')
def frame_analysis(prev_frame, curr_frame):
prev_gray = cv2.cvtColor(prev_frame, cv2.COLOR_RGB2GRAY)
curr_gray = cv2.cvtColor(curr_frame, cv2.COLOR_RGB2GRAY)
ssim_score = ssim(prev_gray, curr_gray)
mean_diff = np.mean(np.abs(curr_frame.astype(float) - prev_frame.astype(float)))
return ssim_score, mean_diff
def is_anomaly(ssim_score, mean_diff, ssim_history, mean_diff_history):
if len(ssim_history) < 5:
return False
ssim_avg = np.mean(ssim_history)
mean_diff_avg = np.mean(mean_diff_history)
ssim_threshold = 0.85
mean_diff_threshold = 6.0
ssim_change_threshold = 0.05
mean_diff_change_threshold = 3.0
if (ssim_score < ssim_threshold and mean_diff > mean_diff_threshold) or \
(ssim_score < ssim_avg - ssim_change_threshold and mean_diff > mean_diff_avg + mean_diff_change_threshold):
return True
return False
@torch.no_grad()
def visualize(dataloader, pipeline, generator, W, H, video_length, num_inference_steps, guidance_scale, output_path, output_fps=7, limit=1, show_stats=False, anomaly_action="none", callback_steps=1, context_frames=24, context_stride=1, context_overlap=4, context_batch_size=1,interpolation_factor=1):
oo_video_path = None
all_video_path = None
for i, batch in enumerate(dataloader):
ref_frame = batch['ref_frame'][0]
clip_image = batch['clip_image'][0]
motions = batch['motions'][0]
file_name = batch['file_name'][0]
if motions is None:
continue
if 'lmk_name' in batch:
lmk_name = batch['lmk_name'][0].split('.')[0]
else:
lmk_name = 'lmk'
print(file_name, lmk_name)
ref_frame = torch.clamp((ref_frame + 1.0) / 2.0, min=0, max=1)
ref_frame = ref_frame.permute((1, 2, 3, 0)).squeeze()
ref_frame = (ref_frame * 255).cpu().numpy().astype(np.uint8)
ref_image = Image.fromarray(ref_frame)
motions = motions.permute((1, 2, 3, 0))
motions = (motions * 255).cpu().numpy().astype(np.uint8)
lmk_images = [Image.fromarray(motion) for motion in motions]
preds = pipeline(ref_image=ref_image,
lmk_images=lmk_images,
width=W,
height=H,
video_length=video_length,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=generator,
clip_image=clip_image,
callback_steps=callback_steps,
context_frames=context_frames,
context_stride=context_stride,
context_overlap=context_overlap,
context_batch_size=context_batch_size,
interpolation_factor=interpolation_factor
).videos
preds = preds.permute((0,2,3,4,1)).squeeze(0)
preds = (preds * 255).cpu().numpy().astype(np.uint8)
# Сохраняем все кадры
frames_dir = os.path.join(output_path, f"frames")
os.makedirs(frames_dir, exist_ok=True)
frame_paths = []
for idx, frame in enumerate(preds):
frame_path = os.path.join(frames_dir, f"frame_{idx:04d}.png")
imageio.imwrite(frame_path, frame)
frame_paths.append(frame_path)
# Обработка аномалий
filtered_frame_paths = []
prev_frame = None
ssim_history = deque(maxlen=5)
mean_diff_history = deque(maxlen=5)
for idx, frame_path in enumerate(frame_paths):
frame = imageio.imread(frame_path)
if prev_frame is not None:
ssim_score, mean_diff = frame_analysis(prev_frame, frame)
ssim_history.append(ssim_score)
mean_diff_history.append(mean_diff)
if show_stats:
print(f"Frame {idx}: SSIM: {ssim_score:.4f}, Mean Diff: {mean_diff:.4f}")
if is_anomaly(ssim_score, mean_diff, ssim_history, mean_diff_history):
if show_stats or anomaly_action != "none":
print(f"Anomaly detected in frame {idx}")
if anomaly_action == "remove":
continue
# Если "none", просто продолжаем без каких-либо действий
filtered_frame_paths.append(frame_path)
prev_frame = frame
# Создание видео из обработанных кадров
oo_video_path = os.path.join(output_path, f"{lmk_name}_oo.mp4")
imageio.mimsave(oo_video_path, [imageio.imread(frame_path) for frame_path in filtered_frame_paths], fps=output_fps)
if 'frames' in batch:
frames = batch['frames'][0]
frames = torch.clamp((frames + 1.0) / 2.0, min=0, max=1)
frames = frames.permute((1, 2, 3, 0))
frames = (frames * 255).cpu().numpy().astype(np.uint8)
combined = [np.concatenate((frame, motion, ref_frame, imageio.imread(pred_path)), axis=1)
for frame, motion, pred_path in zip(frames, motions, filtered_frame_paths)]
else:
combined = [np.concatenate((motion, ref_frame, imageio.imread(pred_path)), axis=1)
for motion, pred_path in zip(motions, filtered_frame_paths)]
all_video_path = os.path.join(output_path, f"{lmk_name}_all.mp4")
imageio.mimsave(all_video_path, combined, fps=output_fps)
if i >= limit:
break
return oo_video_path, all_video_path
@torch.no_grad()
def infer(config_path, model_path, input_path, lmk_path, output_path, model_step, seed,
resolution_w, resolution_h, video_length, num_inference_steps, guidance_scale, output_fps, show_stats,
anomaly_action, callback_steps, context_frames, context_stride, context_overlap, context_batch_size,interpolation_factor):
config = OmegaConf.load(config_path)
config.init_checkpoint = model_path
config.init_num = model_step
config.resolution_w = resolution_w
config.resolution_h = resolution_h
config.video_length = video_length
if config.weight_dtype == "fp16":
weight_dtype = torch.float16
elif config.weight_dtype == "fp32":
weight_dtype = torch.float32
else:
raise ValueError(f"Do not support weight dtype: {config.weight_dtype}")
vae = AutoencoderKL.from_pretrained(config.vae_model_path).to(dtype=weight_dtype, device="cuda")
image_encoder = CLIPVisionModelWithProjection.from_pretrained(config.image_encoder_path).to(dtype=weight_dtype, device="cuda")
referencenet = ReferenceNet2DConditionModel.from_pretrained_2d(config.base_model_path,
referencenet_additional_kwargs=config.model.referencenet_additional_kwargs).to(device="cuda")
unet = UNet3DConditionModel.from_pretrained_2d(config.base_model_path,
motion_module_path=config.motion_module_path,
unet_additional_kwargs=config.model.unet_additional_kwargs).to(device="cuda")
lmk_guider = Guider(conditioning_embedding_channels=320, block_out_channels=(16, 32, 96, 256)).to(device="cuda")
load_model_state_dict(referencenet, f'{config.init_checkpoint}/referencenet.pth', 'referencenet')
load_model_state_dict(unet, f'{config.init_checkpoint}/unet.pth', 'unet')
load_model_state_dict(lmk_guider, f'{config.init_checkpoint}/lmk_guider.pth', 'lmk_guider')
if config.enable_xformers_memory_efficient_attention:
if is_xformers_available():
referencenet.enable_xformers_memory_efficient_attention()
unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
unet.set_reentrant(use_reentrant=False)
referencenet.set_reentrant(use_reentrant=False)
vae.eval()
image_encoder.eval()
unet.eval()
referencenet.eval()
lmk_guider.eval()
sched_kwargs = OmegaConf.to_container(config.scheduler)
if config.enable_zero_snr:
sched_kwargs.update(rescale_betas_zero_snr=True,
timestep_spacing="trailing",
prediction_type="v_prediction")
noise_scheduler = DDIMScheduler(**sched_kwargs)
pipeline = VideoPipeline(vae=vae,
image_encoder=image_encoder,
referencenet=referencenet,
unet=unet,
lmk_guider=lmk_guider,
scheduler=noise_scheduler).to(vae.device, dtype=weight_dtype)
val_dataset = ValDataset(
input_path=input_path,
lmk_path=lmk_path,
resolution_h=config.resolution_h,
resolution_w=config.resolution_w
)
val_dataloader = torch.utils.data.DataLoader(
val_dataset,
batch_size=1,
num_workers=0,
shuffle=False,
collate_fn=val_collate_fn,
)
generator = torch.Generator(device=vae.device)
generator.manual_seed(seed)
oo_video_path, all_video_path = visualize(
val_dataloader,
pipeline,
generator,
W=config.resolution_w,
H=config.resolution_h,
video_length=config.video_length,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
output_path=output_path,
output_fps=output_fps,
show_stats=show_stats,
anomaly_action=anomaly_action,
callback_steps=callback_steps,
context_frames=context_frames,
context_stride=context_stride,
context_overlap=context_overlap,
context_batch_size=context_batch_size,
interpolation_factor=interpolation_factor,
limit=100000000
)
del vae, image_encoder, referencenet, unet, lmk_guider, pipeline
torch.cuda.empty_cache()
gc.collect()
return "Inference completed successfully", oo_video_path, all_video_path
def run_inference(config_path, model_path, input_path, lmk_path, output_path, model_step, seed,
resolution_w, resolution_h, video_length, num_inference_steps=30, guidance_scale=3.5, output_fps=30,
show_stats=False, anomaly_action="none", callback_steps=1, context_frames=24, context_stride=1,
context_overlap=4, context_batch_size=1,interpolation_factor=1):
try:
# Clear memory
torch.cuda.empty_cache()
gc.collect()
return infer(config_path, model_path, input_path, lmk_path, output_path, model_step, seed,
resolution_w, resolution_h, video_length, num_inference_steps, guidance_scale, output_fps,
show_stats, anomaly_action, callback_steps, context_frames, context_stride, context_overlap, context_batch_size,interpolation_factor)
finally:
torch.cuda.empty_cache()
gc.collect()
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, required=True, help="Path to the config file")
parser.add_argument("--model", type=str, required=True, help="Path to the model checkpoint")
parser.add_argument("--input", type=str, required=True, help="Path to the input image")
parser.add_argument("--lmk", type=str, required=True, help="Path to the landmark file")
parser.add_argument("--output", type=str, required=True, help="Path to save the output")
parser.add_argument("--step", type=int, default=0, help="Model step")
parser.add_argument("--seed", type=int, default=42, help="Random seed")
parser.add_argument("--width", type=int, default=512, help="Output video width")
parser.add_argument("--height", type=int, default=512, help="Output video height")
parser.add_argument("--length", type=int, default=16, help="Output video length")
parser.add_argument("--steps", type=int, default=30, help="Number of inference steps")
parser.add_argument("--guidance", type=float, default=3.5, help="Guidance scale")
parser.add_argument("--fps", type=int, default=30, help="Output video FPS")
parser.add_argument("--show-stats", action="store_true", help="Show frame statistics")
parser.add_argument("--anomaly-action", type=str, default="none", choices=["none", "remove"], help="Action for anomaly frames")
parser.add_argument("--callback-steps", type=int, default=1, help="Callback steps")
parser.add_argument("--context-frames", type=int, default=24, help="Context frames")
parser.add_argument("--context-stride", type=int, default=1, help="Context stride")
parser.add_argument("--context-overlap", type=int, default=4, help="Context overlap")
parser.add_argument("--context-batch-size", type=int, default=1, help="Context batch size")
parser.add_argument("--interpolation-factor",type=int, default=1, help="Interpolataion factor" )
args = parser.parse_args()
status, oo_path, all_path = run_inference(
args.config, args.model, args.input, args.lmk, args.output, args.step, args.seed,
args.width, args.height, args.length, args.steps, args.guidance, args.fps,
args.show_stats, args.anomaly_action, args.callback_steps, args.context_frames,
args.context_stride, args.context_overlap, args.context_batch_size,args.interpolation_factor
)
print(status)
print(f"Output video (only output): {oo_path}")
print(f"Output video (all frames): {all_path}")