File size: 30,049 Bytes
9e8a757
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
import os
import re
import time
import random
import numpy as np
import math
import shutil
# import base64 # Not directly needed for Gradio filepath output

# Torch and Audio
import torch
import torch.nn as nn
# import torch.optim as optim # Not needed for inference
# from torch.utils.data import Dataset, DataLoader # Not needed for inference
import torch.nn.functional as F
import torchaudio
import librosa
# import librosa.display # Not used in pipeline

# Text and Audio Processing
from unidecode import unidecode
# from inflect import engine # Not explicitly used in pipeline, consider removing
# import pydub # Not explicitly used in pipeline, consider removing
import soundfile as sf

# Transformers
from transformers import (
    WhisperProcessor, WhisperForConditionalGeneration,
    MarianTokenizer, MarianMTModel,
)
from huggingface_hub import hf_hub_download

# Gradio and Hugging Face Spaces
import gradio as gr
import spaces # <<< --- ADD THIS IMPORT --- <<<

# --- Global Configuration & Device Setup ---
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"--- Initializing on device: {DEVICE} ---") # This will run when the Space builds/starts

# --- Part 1: TTS Model Components (Your Custom TTS) ---
# ... (Keep all your Hyperparams, text_to_seq, audio processing for TTS, and Model class definitions:
# EncoderBlock, DecoderBlock, EncoderPreNet, PostNet, DecoderPreNet, TransformerTTS)
# ... (Ensure TransformerTTS and its sub-modules are correctly defined as in your previous code)
# --- (Start of your model definitions - make sure this is complete from your previous code) ---
class Hyperparams:
  seed = 42
  csv_path = "path/to/metadata.csv"
  wav_path = "path/to/wavs"
  symbols = [
    'EOS', ' ', '!', ',', '-', '.', ';', '?', 'a', 'b', 'c', 'd', 'e', 'f',
    'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's',
    't', 'u', 'v', 'w', 'x', 'y', 'z', 'à', 'â', 'è', 'é', 'ê', 'ü',
    '’', '“', '”'
  ]
  sr = 22050
  n_fft = 2048
  n_stft = int((n_fft//2) + 1)
  hop_length = int(n_fft/8.0)
  win_length = int(n_fft/2.0)
  mel_freq = 128
  max_mel_time = 1024
  power = 2.0
  text_num_embeddings = 2*len(symbols)
  embedding_size = 256
  encoder_embedding_size = 512
  dim_feedforward = 1024
  postnet_embedding_size = 1024
  encoder_kernel_size = 3
  postnet_kernel_size = 5
  ampl_multiplier = 10.0
  ampl_amin = 1e-10
  db_multiplier = 1.0
  ampl_ref = 1.0
  ampl_power = 1.0
  max_db = 100
  scale_db = 10

hp = Hyperparams()

symbol_to_id = {s: i for i, s in enumerate(hp.symbols)}
def text_to_seq(text):
  text = text.lower()
  text = unidecode(text)
  seq = []
  for s in text:
    _id = symbol_to_id.get(s, None)
    if _id is not None:
      seq.append(_id)
  seq.append(symbol_to_id["EOS"])
  return torch.IntTensor(seq)

spec_transform = torchaudio.transforms.Spectrogram(n_fft=hp.n_fft, win_length=hp.win_length, hop_length=hp.hop_length, power=hp.power)
mel_scale_transform = torchaudio.transforms.MelScale(n_mels=hp.mel_freq, sample_rate=hp.sr, n_stft=hp.n_stft)
mel_inverse_transform = torchaudio.transforms.InverseMelScale(n_mels=hp.mel_freq, sample_rate=hp.sr, n_stft=hp.n_stft).to(DEVICE)
griffnlim_transform = torchaudio.transforms.GriffinLim(n_fft=hp.n_fft, win_length=hp.win_length, hop_length=hp.hop_length).to(DEVICE)

def pow_to_db_mel_spec(mel_spec):
  mel_spec = torchaudio.functional.amplitude_to_DB(mel_spec, multiplier=hp.ampl_multiplier, amin=hp.ampl_amin, db_multiplier=hp.db_multiplier, top_db=hp.max_db)
  mel_spec = mel_spec/hp.scale_db
  return mel_spec

def db_to_power_mel_spec(mel_spec):
  mel_spec = mel_spec*hp.scale_db
  mel_spec = torchaudio.functional.DB_to_amplitude(mel_spec, ref=hp.ampl_ref, power=hp.ampl_power)
  return mel_spec

def inverse_mel_spec_to_wav(mel_spec):
  power_mel_spec = db_to_power_mel_spec(mel_spec.to(DEVICE))
  spectrogram = mel_inverse_transform(power_mel_spec)
  pseudo_wav = griffnlim_transform(spectrogram)
  return pseudo_wav

def mask_from_seq_lengths(sequence_lengths: torch.Tensor, max_length: int) -> torch.BoolTensor:
    ones = sequence_lengths.new_ones(sequence_lengths.size(0), max_length)
    range_tensor = ones.cumsum(dim=1)
    return sequence_lengths.unsqueeze(1) >= range_tensor

class EncoderBlock(nn.Module): # Your EncoderBlock definition
    def __init__(self):
        super(EncoderBlock, self).__init__()
        self.norm_1 = nn.LayerNorm(normalized_shape=hp.embedding_size)
        self.attn = torch.nn.MultiheadAttention(embed_dim=hp.embedding_size, num_heads=4, dropout=0.1, batch_first=True)
        self.dropout_1 = torch.nn.Dropout(0.1)
        self.norm_2 = nn.LayerNorm(normalized_shape=hp.embedding_size)
        self.linear_1 = nn.Linear(hp.embedding_size, hp.dim_feedforward)
        self.dropout_2 = torch.nn.Dropout(0.1)
        self.linear_2 = nn.Linear(hp.dim_feedforward, hp.embedding_size)
        self.dropout_3 = torch.nn.Dropout(0.1)
    def forward(self, x, attn_mask=None, key_padding_mask=None):
        x_out = self.norm_1(x)
        x_out, _ = self.attn(query=x_out, key=x_out, value=x_out, attn_mask=attn_mask, key_padding_mask=key_padding_mask)
        x_out = self.dropout_1(x_out)
        x = x + x_out
        x_out = self.norm_2(x)
        x_out = self.linear_1(x_out)
        x_out = F.relu(x_out)
        x_out = self.dropout_2(x_out)
        x_out = self.linear_2(x_out)
        x_out = self.dropout_3(x_out)
        x = x + x_out
        return x

class DecoderBlock(nn.Module): # Your DecoderBlock definition
    def __init__(self):
        super(DecoderBlock, self).__init__()
        self.norm_1 = nn.LayerNorm(normalized_shape=hp.embedding_size)
        self.self_attn = torch.nn.MultiheadAttention(embed_dim=hp.embedding_size, num_heads=4, dropout=0.1, batch_first=True)
        self.dropout_1 = torch.nn.Dropout(0.1)
        self.norm_2 = nn.LayerNorm(normalized_shape=hp.embedding_size)
        self.attn = torch.nn.MultiheadAttention(embed_dim=hp.embedding_size, num_heads=4, dropout=0.1, batch_first=True)
        self.dropout_2 = torch.nn.Dropout(0.1)
        self.norm_3 = nn.LayerNorm(normalized_shape=hp.embedding_size)
        self.linear_1 = nn.Linear(hp.embedding_size, hp.dim_feedforward)
        self.dropout_3 = torch.nn.Dropout(0.1)
        self.linear_2 = nn.Linear(hp.dim_feedforward, hp.embedding_size)
        self.dropout_4 = torch.nn.Dropout(0.1)
    def forward(self, x, memory, x_attn_mask=None, x_key_padding_mask=None, memory_attn_mask=None, memory_key_padding_mask=None):
        x_out, _ = self.self_attn(query=x, key=x, value=x, attn_mask=x_attn_mask, key_padding_mask=x_key_padding_mask)
        x_out = self.dropout_1(x_out)
        x = self.norm_1(x + x_out)
        x_out, _ = self.attn(query=x, key=memory, value=memory, attn_mask=memory_attn_mask, key_padding_mask=memory_key_padding_mask)
        x_out = self.dropout_2(x_out)
        x = self.norm_2(x + x_out)
        x_out = self.linear_1(x)
        x_out = F.relu(x_out)
        x_out = self.dropout_3(x_out)
        x_out = self.linear_2(x_out)
        x_out = self.dropout_4(x_out)
        x = self.norm_3(x + x_out)
        return x

class EncoderPreNet(nn.Module): # Your EncoderPreNet definition
    def __init__(self):
        super(EncoderPreNet, self).__init__()
        self.embedding = nn.Embedding(num_embeddings=hp.text_num_embeddings, embedding_dim=hp.encoder_embedding_size)
        self.linear_1 = nn.Linear(hp.encoder_embedding_size, hp.encoder_embedding_size)
        self.linear_2 = nn.Linear(hp.encoder_embedding_size, hp.embedding_size)
        self.conv_1 = nn.Conv1d(hp.encoder_embedding_size, hp.encoder_embedding_size, kernel_size=hp.encoder_kernel_size, stride=1, padding=int((hp.encoder_kernel_size - 1) / 2), dilation=1)
        self.bn_1 = nn.BatchNorm1d(hp.encoder_embedding_size)
        self.dropout_1 = torch.nn.Dropout(0.5)
        self.conv_2 = nn.Conv1d(hp.encoder_embedding_size, hp.encoder_embedding_size, kernel_size=hp.encoder_kernel_size, stride=1, padding=int((hp.encoder_kernel_size - 1) / 2), dilation=1)
        self.bn_2 = nn.BatchNorm1d(hp.encoder_embedding_size)
        self.dropout_2 = torch.nn.Dropout(0.5)
        self.conv_3 = nn.Conv1d(hp.encoder_embedding_size, hp.encoder_embedding_size, kernel_size=hp.encoder_kernel_size, stride=1, padding=int((hp.encoder_kernel_size - 1) / 2), dilation=1)
        self.bn_3 = nn.BatchNorm1d(hp.encoder_embedding_size)
        self.dropout_3 = torch.nn.Dropout(0.5)
    def forward(self, text):
        x = self.embedding(text)
        x = self.linear_1(x)
        x = x.transpose(2, 1)
        x = self.conv_1(x)
        x = self.bn_1(x); x = F.relu(x); x = self.dropout_1(x)
        x = self.conv_2(x)
        x = self.bn_2(x); x = F.relu(x); x = self.dropout_2(x)
        x = self.conv_3(x)
        x = self.bn_3(x); x = F.relu(x); x = self.dropout_3(x)
        x = x.transpose(1, 2)
        x = self.linear_2(x)
        return x

class PostNet(nn.Module): # Your PostNet definition
    def __init__(self):
        super(PostNet, self).__init__()
        self.conv_1 = nn.Conv1d(hp.mel_freq, hp.postnet_embedding_size, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1)
        self.bn_1 = nn.BatchNorm1d(hp.postnet_embedding_size)
        self.dropout_1 = torch.nn.Dropout(0.5)
        self.conv_2 = nn.Conv1d(hp.postnet_embedding_size, hp.postnet_embedding_size, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1)
        self.bn_2 = nn.BatchNorm1d(hp.postnet_embedding_size)
        self.dropout_2 = torch.nn.Dropout(0.5)
        self.conv_3 = nn.Conv1d(hp.postnet_embedding_size, hp.postnet_embedding_size, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1)
        self.bn_3 = nn.BatchNorm1d(hp.postnet_embedding_size)
        self.dropout_3 = torch.nn.Dropout(0.5)
        self.conv_4 = nn.Conv1d(hp.postnet_embedding_size, hp.postnet_embedding_size, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1)
        self.bn_4 = nn.BatchNorm1d(hp.postnet_embedding_size)
        self.dropout_4 = torch.nn.Dropout(0.5)
        self.conv_5 = nn.Conv1d(hp.postnet_embedding_size, hp.postnet_embedding_size, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1)
        self.bn_5 = nn.BatchNorm1d(hp.postnet_embedding_size)
        self.dropout_5 = torch.nn.Dropout(0.5)
        self.conv_6 = nn.Conv1d(hp.postnet_embedding_size, hp.mel_freq, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1)
        self.bn_6 = nn.BatchNorm1d(hp.mel_freq)
        self.dropout_6 = torch.nn.Dropout(0.5)
    def forward(self, x):
        x_orig = x # Store original for residual connection if postnet predicts residual
        x = x.transpose(2, 1)
        x = self.conv_1(x); x = self.bn_1(x); x = torch.tanh(x); x = self.dropout_1(x)
        x = self.conv_2(x); x = self.bn_2(x); x = torch.tanh(x); x = self.dropout_2(x)
        x = self.conv_3(x); x = self.bn_3(x); x = torch.tanh(x); x = self.dropout_3(x)
        x = self.conv_4(x); x = self.bn_4(x); x = torch.tanh(x); x = self.dropout_4(x)
        x = self.conv_5(x); x = self.bn_5(x); x = torch.tanh(x); x = self.dropout_5(x)
        x = self.conv_6(x); x = self.bn_6(x); x = self.dropout_6(x) # No Tanh on last layer for mel usually
        x = x.transpose(1, 2)
        return x # This is the residual, should be added to original mel_linear

class DecoderPreNet(nn.Module): # Your DecoderPreNet definition
    def __init__(self):
        super(DecoderPreNet, self).__init__()
        self.linear_1 = nn.Linear(hp.mel_freq, hp.embedding_size)
        self.linear_2 = nn.Linear(hp.embedding_size, hp.embedding_size)
    def forward(self, x):
        x = self.linear_1(x)
        x = F.relu(x)
        x = F.dropout(x, p=0.5, training=self.training)
        x = self.linear_2(x)
        x = F.relu(x)
        x = F.dropout(x, p=0.5, training=self.training)
        return x

class TransformerTTS(nn.Module): # Your TransformerTTS definition
    def __init__(self, device=DEVICE):
        super(TransformerTTS, self).__init__()
        self.encoder_prenet = EncoderPreNet()
        self.decoder_prenet = DecoderPreNet()
        self.postnet = PostNet()
        self.pos_encoding = nn.Embedding(num_embeddings=hp.max_mel_time, embedding_dim=hp.embedding_size)
        self.encoder_block_1 = EncoderBlock()
        self.encoder_block_2 = EncoderBlock()
        self.encoder_block_3 = EncoderBlock()
        self.decoder_block_1 = DecoderBlock()
        self.decoder_block_2 = DecoderBlock()
        self.decoder_block_3 = DecoderBlock()
        self.linear_1 = nn.Linear(hp.embedding_size, hp.mel_freq)
        self.linear_2 = nn.Linear(hp.embedding_size, 1) # Stop token
        self.norm_memory = nn.LayerNorm(normalized_shape=hp.embedding_size)
        self.device = device

    def forward(self, text, text_len, mel, mel_len): # For training/teacher-forcing
        # ... (Your detailed forward pass for training, with all masks)
        N = text.shape[0]; S = text.shape[1]; TIME = mel.shape[1]
        current_device = text.device

        src_key_padding_mask = torch.zeros((N, S), device=current_device, dtype=torch.bool).masked_fill(~mask_from_seq_lengths(text_len, max_length=S), True)
        src_mask = None # Typically encoder self-attention doesn't use a causal mask

        tgt_key_padding_mask = torch.zeros((N, TIME), device=current_device, dtype=torch.bool).masked_fill(~mask_from_seq_lengths(mel_len, max_length=TIME), True)
        tgt_mask = torch.zeros((TIME, TIME), device=current_device).masked_fill(torch.triu(torch.full((TIME, TIME), True, device=current_device, dtype=torch.bool), diagonal=1), float("-inf"))
        memory_mask = None # Cross-attention mask, typically not needed unless specific structure

        text_x = self.encoder_prenet(text)
        pos_codes = self.pos_encoding(torch.arange(hp.max_mel_time, device=current_device))
        text_s_dim = text_x.shape[1]
        text_x = text_x + pos_codes[:text_s_dim]

        text_x = self.encoder_block_1(text_x, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)
        text_x = self.encoder_block_2(text_x, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)
        text_x = self.encoder_block_3(text_x, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)
        memory = self.norm_memory(text_x)

        mel_x = self.decoder_prenet(mel)
        mel_time_dim = mel_x.shape[1]
        mel_x = mel_x + pos_codes[:mel_time_dim]

        mel_x = self.decoder_block_1(x=mel_x, memory=memory, x_attn_mask=tgt_mask, x_key_padding_mask=tgt_key_padding_mask, memory_attn_mask=memory_mask, memory_key_padding_mask=src_key_padding_mask)
        mel_x = self.decoder_block_2(x=mel_x, memory=memory, x_attn_mask=tgt_mask, x_key_padding_mask=tgt_key_padding_mask, memory_attn_mask=memory_mask, memory_key_padding_mask=src_key_padding_mask)
        mel_x = self.decoder_block_3(x=mel_x, memory=memory, x_attn_mask=tgt_mask, x_key_padding_mask=tgt_key_padding_mask, memory_attn_mask=memory_mask, memory_key_padding_mask=src_key_padding_mask)

        mel_linear = self.linear_1(mel_x)
        mel_postnet_residual = self.postnet(mel_linear) # Postnet predicts residual
        mel_postnet = mel_linear + mel_postnet_residual

        stop_token = self.linear_2(mel_x) # Sigmoid applied later

        # Masking for training outputs
        bool_mel_mask = tgt_key_padding_mask.unsqueeze(-1).repeat(1, 1, hp.mel_freq)
        mel_linear = mel_linear.masked_fill(bool_mel_mask, 0.0)
        mel_postnet = mel_postnet.masked_fill(bool_mel_mask, 0.0)
        # Ensure stop_token is [N, TIME]
        stop_token = stop_token.masked_fill(tgt_key_padding_mask.unsqueeze(-1) if stop_token.dim() == 3 else tgt_key_padding_mask, 1e3)
        if stop_token.dim() == 3 and stop_token.shape[2] == 1:
            stop_token = stop_token.squeeze(-1)


        return mel_postnet, mel_linear, stop_token


    @torch.no_grad()
    def inference(self, text, max_length=800, stop_token_threshold=0.5): # text: [1, seq_len]
        self.eval()
        N = text.shape[0] # Should be 1
        current_device = text.device
        text_lengths = torch.tensor([text.shape[1]], device=current_device)

        # Encoder pass (once)
        src_key_padding_mask_inf = torch.zeros((N, text.shape[1]), device=current_device, dtype=torch.bool) # All False initially
        # No, src_key_padding_mask should be based on actual text length, even if N=1, S=text.shape[1]
        # For inference with single item, it's often all False (no padding in input text usually)
        # However, to be consistent with how `mask_from_seq_lengths` works:
        src_key_padding_mask_inf = ~mask_from_seq_lengths(text_lengths, text.shape[1])


        encoder_output = self.encoder_prenet(text)
        pos_codes = self.pos_encoding(torch.arange(hp.max_mel_time, device=current_device))
        text_s_dim = encoder_output.shape[1]
        encoder_output = encoder_output + pos_codes[:text_s_dim]

        encoder_output = self.encoder_block_1(encoder_output, key_padding_mask=src_key_padding_mask_inf)
        encoder_output = self.encoder_block_2(encoder_output, key_padding_mask=src_key_padding_mask_inf)
        encoder_output = self.encoder_block_3(encoder_output, key_padding_mask=src_key_padding_mask_inf)
        memory = self.norm_memory(encoder_output)

        # Decoder pass (iterative)
        mel_input = torch.zeros((N, 1, hp.mel_freq), device=current_device) # SOS frame
        generated_mel_frames = []

        for i in range(max_length):
            mel_lengths_inf = torch.tensor([mel_input.shape[1]], device=current_device)
            # For decoder self-attention, causal mask is needed
            tgt_mask_inf = torch.zeros((mel_input.shape[1], mel_input.shape[1]), device=current_device).masked_fill(
                torch.triu(torch.full((mel_input.shape[1], mel_input.shape[1]), True, device=current_device, dtype=torch.bool), diagonal=1), float("-inf")
            )
            # Decoder input padding mask (all False as we build it frame by frame, no padding yet)
            tgt_key_padding_mask_inf = torch.zeros((N, mel_input.shape[1]), device=current_device, dtype=torch.bool)


            mel_x = self.decoder_prenet(mel_input)
            mel_time_dim = mel_input.shape[1]
            mel_x = mel_x + pos_codes[:mel_time_dim] # Positional encoding for current mel sequence

            mel_x = self.decoder_block_1(x=mel_x, memory=memory, x_attn_mask=tgt_mask_inf, x_key_padding_mask=tgt_key_padding_mask_inf, memory_key_padding_mask=src_key_padding_mask_inf)
            mel_x = self.decoder_block_2(x=mel_x, memory=memory, x_attn_mask=tgt_mask_inf, x_key_padding_mask=tgt_key_padding_mask_inf, memory_key_padding_mask=src_key_padding_mask_inf)
            mel_x = self.decoder_block_3(x=mel_x, memory=memory, x_attn_mask=tgt_mask_inf, x_key_padding_mask=tgt_key_padding_mask_inf, memory_key_padding_mask=src_key_padding_mask_inf)

            mel_linear_step = self.linear_1(mel_x[:, -1:, :]) # Predict only for the last frame
            mel_postnet_residual_step = self.postnet(mel_linear_step)
            current_mel_frame = mel_linear_step + mel_postnet_residual_step

            generated_mel_frames.append(current_mel_frame)
            mel_input = torch.cat([mel_input, current_mel_frame], dim=1) # Append to input for next step

            # Stop token prediction (based on the last decoder output before linear to mel)
            stop_token_logit = self.linear_2(mel_x[:, -1:, :]) # Stop token from last frame's decoder hidden state
            stop_token_prob = torch.sigmoid(stop_token_logit.squeeze())

            if stop_token_prob > stop_token_threshold:
                # print(f"Stop token threshold reached at step {i+1}")
                break
            if mel_input.shape[1] > hp.max_mel_time -1: # Safety break based on max_mel_time
                # print(f"Max mel time {hp.max_mel_time} almost reached.")
                break


        if not generated_mel_frames:
            print("Warning: TTS inference produced no mel frames.")
            return torch.zeros((N, 0, hp.mel_freq), device=current_device) # Return empty tensor

        final_mel_output = torch.cat(generated_mel_frames, dim=1)
        return final_mel_output # Removed stop_token_outputs as it's not used by caller
# --- (End of your model definitions) ---

# --- Part 2: Model Loading ---
# (Same as before - ensure TTS_MODEL = TransformerTTS(device=DEVICE).to(DEVICE) is used)
TTS_MODEL_HUB_ID = "MoHamdyy/transformer-tts-ljspeech"
ASR_HUB_ID       = "MoHamdyy/whisper-stt-model"
MARIAN_HUB_ID    = "MoHamdyy/marian-ar-en-translation"

TTS_MODEL = None
stt_processor = None
stt_model = None
mt_tokenizer = None
mt_model = None

# Wrap model loading in a function to clearly see when it happens or to potentially delay it.
# For Spaces, global loading is fine and preferred as it happens once.
print("--- Starting Model Loading ---")
try:
    print(f"Loading TTS model ({TTS_MODEL_HUB_ID}) to {DEVICE}...")
    tts_model_path = hf_hub_download(repo_id=TTS_MODEL_HUB_ID, filename="train_SimpleTransfromerTTS.pt")
    state = torch.load(tts_model_path, map_location=DEVICE) # Load to target device directly
    TTS_MODEL = TransformerTTS(device=DEVICE).to(DEVICE)
    model_state_dict = state.get("model", state.get("state_dict", state))
    TTS_MODEL.load_state_dict(model_state_dict)
    TTS_MODEL.eval()
    print("TTS model loaded successfully.")
except Exception as e:
    print(f"Error loading TTS model: {e}")

try:
    print(f"Loading STT (Whisper) model ({ASR_HUB_ID}) to {DEVICE}...")
    stt_processor = WhisperProcessor.from_pretrained(ASR_HUB_ID)
    stt_model = WhisperForConditionalGeneration.from_pretrained(ASR_HUB_ID).to(DEVICE).eval()
    print("STT model loaded successfully.")
except Exception as e:
    print(f"Error loading STT model: {e}")

try:
    print(f"Loading TTT (MarianMT) model ({MARIAN_HUB_ID}) to {DEVICE}...")
    mt_tokenizer = MarianTokenizer.from_pretrained(MARIAN_HUB_ID)
    mt_model = MarianMTModel.from_pretrained(MARIAN_HUB_ID).to(DEVICE).eval()
    print("TTT model loaded successfully.")
except Exception as e:
    print(f"Error loading TTT model: {e}")
print("--- Model Loading Complete ---")


# --- Part 3: Full Pipeline Function for Gradio ---
@spaces.GPU # <<< --- APPLY THE DECORATOR HERE --- <<<
def full_speech_translation_pipeline_gradio(audio_input_path):
    # This print will show the device context *inside* the decorated function
    # For ZeroGPU, this should ideally show 'cuda:X' when the function is executed
    current_processing_device = next(stt_model.parameters()).device if stt_model else "CPU (STT model not loaded)"
    print(f"--- @spaces.GPU function: Pipeline running on device: {current_processing_device} ---")


    if not all([TTS_MODEL, stt_processor, stt_model, mt_tokenizer, mt_model]):
        error_msg = "Critical Error: One or more models failed to load during Space initialization. Cannot process."
        print(error_msg)
        # Raising gr.Error is better for UI feedback
        raise gr.Error(error_msg)


    if audio_input_path is None:
        # This case should ideally be handled by Gradio's input validation or a check before calling.
        # If it still occurs, provide a clear message.
        raise gr.Error("No audio file provided. Please upload an audio file.")

    print(f"--- GRADIO PIPELINE START (GPU context): Processing {audio_input_path} ---")

    # STT Stage
    arabic_transcript = "STT Error: Processing failed."
    try:
        print("STT: Loading and resampling audio...")
        wav, sr = torchaudio.load(audio_input_path)
        if wav.size(0) > 1: wav = wav.mean(dim=0, keepdim=True)
        target_sr_stt = stt_processor.feature_extractor.sampling_rate
        if sr != target_sr_stt: wav = torchaudio.transforms.Resample(sr, target_sr_stt)(wav)
        # Move wav to the STT model's device *before* converting to numpy if STT model is on GPU
        audio_array_stt = wav.to(DEVICE).squeeze().cpu().numpy() # Process on DEVICE, then to CPU for numpy

        print("STT: Extracting features and transcribing...")
        # Ensure inputs are on the same device as the model
        inputs_stt = stt_processor(audio_array_stt, sampling_rate=target_sr_stt, return_tensors="pt").input_features.to(DEVICE)
        forced_ids = stt_processor.get_decoder_prompt_ids(language="arabic", task="transcribe")
        with torch.no_grad():
            generated_ids = stt_model.generate(inputs_stt, forced_decoder_ids=forced_ids, max_new_tokens=256)
        arabic_transcript = stt_processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
        print(f"STT Output: {arabic_transcript}")
    except Exception as e:
        print(f"STT Error: {e}")
        raise gr.Error(f"STT processing failed: {e}")


    # TTT Stage
    english_translation = "TTT Error: Processing failed."
    if arabic_transcript and not arabic_transcript.startswith("STT Error"):
        try:
            print("TTT: Translating to English...")
            batch = mt_tokenizer(arabic_transcript, return_tensors="pt", padding=True, truncation=True).to(DEVICE)
            with torch.no_grad():
                translated_ids = mt_model.generate(**batch, max_length=512) # max_new_tokens can also be used
            english_translation = mt_tokenizer.batch_decode(translated_ids, skip_special_tokens=True)[0].strip()
            print(f"TTT Output: {english_translation}")
        except Exception as e:
            print(f"TTT Error: {e}")
            raise gr.Error(f"TTT processing failed: {e}")

    else:
        if not arabic_transcript or arabic_transcript.startswith("STT Error"):
            english_translation = "(Skipped TTT due to STT failure or empty STT output)"
        print(english_translation)


    # TTS Stage
    output_tts_audio_filepath = None
    if english_translation and not english_translation.startswith("TTT Error") and TTS_MODEL:
        try:
            print("TTS: Synthesizing English speech...")
            if not english_translation.strip():
                 print("TTS Warning: Empty string for synthesis. Skipping TTS.")
            else:
                sequence = text_to_seq(english_translation).unsqueeze(0).to(DEVICE)
                # max_length for TTS inference refers to max output mel frames
                generated_mel = TTS_MODEL.inference(sequence, max_length=hp.max_mel_time - 50, stop_token_threshold=0.5)

                print(f"TTS: Generated mel shape: {generated_mel.shape if generated_mel is not None else 'None'}")
                if generated_mel is not None and generated_mel.numel() > 0 and generated_mel.shape[1] > 0 :
                    # TTS model's inverse_mel_spec_to_wav expects mel on DEVICE and returns wav on CPU
                    # The mel from inference should be [N, mel_len, mel_bins]
                    # inverse_mel_spec_to_wav might expect [mel_bins, mel_len]
                    mel_for_vocoder = generated_mel.detach().squeeze(0).transpose(0, 1) # to [mel_len, mel_bins]
                    audio_tensor = inverse_mel_spec_to_wav(mel_for_vocoder) # This function handles .to(DEVICE) internally
                    synthesized_audio_np = audio_tensor.cpu().numpy() # Ensure output is on CPU for soundfile
                    print(f"TTS: Synthesized audio shape: {synthesized_audio_np.shape}")

                    timestamp = int(time.time()*1000) # more unique
                    output_tts_audio_filepath = f"output_audio_{timestamp}.wav"
                    sf.write(output_tts_audio_filepath, synthesized_audio_np, hp.sr)
                    print(f"TTS: Synthesized audio saved to: {output_tts_audio_filepath}")
                else:
                    print("TTS Warning: Generated mel spectrogram was empty or invalid.")
        except Exception as e:
            print(f"TTS Error: {e}")
            # Do not raise gr.Error here if a partial result (text) is still useful
            # output_tts_audio_filepath will remain None
            english_translation += f" (TTS Error: {e})" # Append error to text
    else:
        if not TTS_MODEL: print("TTS SKIPPED: Model not loaded.")
        elif not (english_translation and not english_translation.startswith("TTT Error")):
             print("TTS SKIPPED: (Due to TTT failure or empty TTT output)")


    print(f"--- GRADIO PIPELINE END (GPU context) ---")
    return arabic_transcript, english_translation, output_tts_audio_filepath


# --- Part 4: Gradio Interface Definition ---
# (Same as before)
iface = gr.Interface(
    fn=full_speech_translation_pipeline_gradio,
    inputs=[
        gr.Audio(type="filepath", label="Upload Arabic Speech")
    ],
    outputs=[
        gr.Textbox(label="Arabic Transcript (STT)"),
        gr.Textbox(label="English Translation (TTT)"),
        gr.Audio(label="Synthesized English Speech (TTS)", type="filepath")
    ],
    title="Arabic to English Speech Translation (ZeroGPU)",
    description="Upload an Arabic audio file. Transcribed to Arabic (Whisper), translated to English (MarianMT), synthesized to English speech (Custom TransformerTTS).",
    allow_flagging="never",
    # examples=[["sample.wav"]] # If you add a sample.wav to your repo
)

# --- Part 5: Launch for Spaces (and local testing) ---
if __name__ == '__main__':
    # Clean up temp audio files from previous local runs
    for f_name in os.listdir("."):
        if f_name.startswith("output_audio_") and f_name.endswith(".wav"):
            try:
                os.remove(f_name)
            except OSError:
                pass # Ignore if file is already gone or locked
    print("Starting Gradio interface locally with debug mode...")
    iface.launch(debug=True, share=False) # share=False for local, Spaces handles public URL