MoHamdyy commited on
Commit
e088d48
·
1 Parent(s): 4cd6538

initial commit

Browse files
Files changed (1) hide show
  1. app.py +39 -118
app.py CHANGED
@@ -443,154 +443,75 @@ print("--- Model Loading Complete ---")
443
 
444
  # --- Part 3: Full Pipeline Function for Gradio ---
445
  @spaces.GPU # For ZeroGPU execution context
446
- def full_speech_translation_pipeline_gradio(audio_input_path: str):
447
- # This print will show the device context *inside* the decorated function
448
- # For ZeroGPU, this should ideally show 'cuda:X' when the function is executed
449
- # Ensure models are loaded and on the correct device before this function is called.
450
- # The global DEVICE variable should reflect the GPU if available.
451
- if stt_model: # Check if at least one model is loaded to get device
452
- current_pipeline_device = next(stt_model.parameters()).device
453
- print(f"--- @spaces.GPU function: Pipeline attempting to run on device: {current_pipeline_device} ---")
454
- else:
455
- print(f"--- @spaces.GPU function: STT model not loaded, cannot determine precise pipeline device yet. Target: {DEVICE} ---")
456
-
457
-
458
- if not all([TTS_MODEL, stt_processor, stt_model, mt_tokenizer, mt_model]):
459
- error_msg = "Critical Error: One or more models failed to load during Space initialization. Cannot process."
460
- print(error_msg)
461
- raise gr.Error(error_msg) # Use Gradio's error for better UI feedback
462
-
463
- if audio_input_path is None: # Gradio sends None if no file
464
- raise gr.Error("No audio file provided. Please upload an audio file.")
465
-
466
- # Check if the file path actually exists (Gradio should handle temp file creation)
467
- # This check might be redundant if Gradio always provides a valid temp path for uploaded files.
468
- if not os.path.exists(audio_input_path):
469
- error_msg = f"Error: Audio file path provided by Gradio does not exist: {audio_input_path}"
470
- print(error_msg)
471
- raise gr.Error("Internal error: Audio file path not found.")
472
-
473
-
474
- print(f"--- GRADIO PIPELINE START (GPU context): Processing {audio_input_path} ---")
475
-
476
- # STT Stage (aligning with your original logic)
477
  arabic_transcript = "STT Error: Processing failed."
478
  try:
479
  print("STT: Loading and resampling audio...")
480
  wav, sr = torchaudio.load(audio_input_path)
481
- if wav.size(0) > 1: wav = wav.mean(dim=0, keepdim=True) # Ensure mono
482
-
483
- # Ensure stt_processor is available
484
- if not stt_processor: raise gr.Error("STT Processor not loaded.")
485
  target_sr_stt = stt_processor.feature_extractor.sampling_rate
 
 
486
 
487
- if sr != target_sr_stt:
488
- # Resample op can be on CPU or GPU. If wav is already on GPU, it might be faster.
489
- # However, for simplicity and consistency with original, let's keep it default (CPU).
490
- resampler = torchaudio.transforms.Resample(sr, target_sr_stt)
491
- wav = resampler(wav)
492
-
493
- audio_array_stt = wav.squeeze().cpu().numpy() # Whisper processor expects NumPy array
494
-
495
  print("STT: Extracting features and transcribing...")
496
- # Ensure stt_model is available
497
- if not stt_model: raise gr.Error("STT Model not loaded.")
498
- inputs_stt = stt_processor(audio_array_stt, sampling_rate=target_sr_stt, return_tensors="pt").input_features.to(DEVICE)
499
  forced_ids = stt_processor.get_decoder_prompt_ids(language="arabic", task="transcribe")
500
-
501
  with torch.no_grad():
502
- generated_ids = stt_model.generate(inputs_stt, forced_decoder_ids=forced_ids, max_length=448) # Using your original max_length
503
- arabic_transcript = stt_processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
504
  print(f"STT Output: {arabic_transcript}")
505
  except Exception as e:
506
  print(f"STT Error: {e}")
507
- raise gr.Error(f"STT processing failed: {str(e)}") # Show error in Gradio UI
508
 
509
- # TTT Stage (aligning with your original logic)
510
  english_translation = "TTT Error: Processing failed."
511
  if arabic_transcript and not arabic_transcript.startswith("STT Error"):
512
  try:
513
  print("TTT: Translating to English...")
514
- # Ensure mt_tokenizer and mt_model are available
515
- if not mt_tokenizer: raise gr.Error("Marian Tokenizer not loaded.")
516
- if not mt_model: raise gr.Error("Marian Model not loaded.")
517
-
518
- batch = mt_tokenizer(arabic_transcript, return_tensors="pt", padding=True, truncation=True).to(DEVICE) # Added truncation
519
  with torch.no_grad():
520
  translated_ids = mt_model.generate(**batch, max_length=512)
521
  english_translation = mt_tokenizer.batch_decode(translated_ids, skip_special_tokens=True)[0].strip()
522
  print(f"TTT Output: {english_translation}")
523
  except Exception as e:
524
  print(f"TTT Error: {e}")
525
- raise gr.Error(f"TTT processing failed: {str(e)}") # Show error in Gradio UI
526
- elif arabic_transcript.startswith("STT Error"):
527
- english_translation = "(Skipped TTT due to STT error)" # More specific message
528
- print(english_translation)
529
- else: # Handles empty arabic_transcript case
530
- english_translation = "(Skipped TTT due to empty STT output)"
531
  print(english_translation)
532
 
533
-
534
- # TTS Stage (aligning with your original logic for inference call)
535
- output_tts_audio_filepath = None # Initialize for Gradio output
536
- if english_translation and not english_translation.startswith("TTT Error") and not english_translation.startswith("(Skipped TTT"):
537
- if TTS_MODEL:
538
- try:
539
- print("TTS: Synthesizing English speech...")
540
- if not english_translation.strip():
541
- print("TTS Warning: Empty string provided for synthesis. Skipping TTS.")
542
- # No gr.Error here, just skip TTS
543
- else:
544
- sequence = text_to_seq(english_translation).unsqueeze(0).to(DEVICE)
545
-
546
- # Call TTS_MODEL.inference exactly as in your original, working pipeline
547
- # This assumes your TTS_MODEL.inference returns (mel_spectrogram, other_data_like_stop_tokens)
548
- generated_mel, _ = TTS_MODEL.inference(
549
- sequence,
550
- max_length=hp.max_mel_time-20, # Your original max_length
551
- stop_token_threshold=0.5 # Your original threshold
552
- # with_tqdm=False # Not needed for Gradio backend
553
- )
554
-
555
- print(f"TTS: Generated mel shape: {generated_mel.shape if generated_mel is not None else 'None'}")
556
- if generated_mel is not None and generated_mel.numel() > 0 and generated_mel.shape[1] > 0: # Check time dimension
557
- # Your original processing of mel_for_vocoder
558
- mel_for_vocoder = generated_mel.detach().squeeze(0).transpose(0, 1)
559
- audio_tensor = inverse_mel_spec_to_wav(mel_for_vocoder) # This needs to be correct for your model
560
- synthesized_audio_np = audio_tensor.cpu().numpy()
561
- print(f"TTS: Synthesized audio shape: {synthesized_audio_np.shape}")
562
-
563
- # Save to a temporary file for Gradio Audio output
564
- timestamp = int(time.time()*1000) # For a somewhat unique filename
565
- output_tts_audio_filepath = f"synthesized_speech_{timestamp}.wav"
566
- sf.write(output_tts_audio_filepath, synthesized_audio_np, hp.sr)
567
- print(f"TTS: Synthesized audio saved to: {output_tts_audio_filepath}")
568
- else:
569
- print("TTS Warning: Generated mel spectrogram was empty or invalid.")
570
- # Do not raise gr.Error, let the text pass through.
571
- # output_tts_audio_filepath remains None.
572
- except Exception as e:
573
- print(f"TTS Error: {e}")
574
- # Append error to text, don't stop the whole process if text is available
575
- english_translation += f" (TTS synthesis failed: {str(e)})"
576
- # output_tts_audio_filepath remains None.
577
- else:
578
- print("TTS SKIPPED: TTS_MODEL not loaded.")
579
- elif not TTS_MODEL: # If TTS model didn't load but we reached here
580
- print("TTS SKIPPED: Model not loaded.")
581
- else: # If english_translation was invalid for TTS
582
- print(f"TTS SKIPPED: English text was '{english_translation}'.")
583
-
584
-
585
- print(f"--- GRADIO PIPELINE END (GPU context) ---")
586
- # Return values in the order expected by Gradio's `outputs` components
587
- return arabic_transcript, english_translation, output_tts_audio_filepath
588
 
589
 
590
  # --- Part 4: Gradio Interface Definition ---
591
  # (Same as before)
592
  iface = gr.Interface(
593
- fn=full_speech_translation_pipeline_gradio,
594
  inputs=[
595
  gr.Audio(type="filepath", label="Upload Arabic Speech")
596
  ],
 
443
 
444
  # --- Part 3: Full Pipeline Function for Gradio ---
445
  @spaces.GPU # For ZeroGPU execution context
446
+ def full_speech_translation_pipeline(audio_input_path: str):
447
+ print(f"--- PIPELINE START: Processing {audio_input_path} ---")
448
+ if audio_input_path is None or not os.path.exists(audio_input_path):
449
+ msg = "Error: Audio file not provided or not found."
450
+ print(msg)
451
+ # Return empty/default values
452
+ return "Error: No file", "", (hp.sr, np.array([]).astype(np.float32))
453
+
454
+ # STT Stage
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
455
  arabic_transcript = "STT Error: Processing failed."
456
  try:
457
  print("STT: Loading and resampling audio...")
458
  wav, sr = torchaudio.load(audio_input_path)
459
+ if wav.size(0) > 1: wav = wav.mean(dim=0, keepdim=True)
 
 
 
460
  target_sr_stt = stt_processor.feature_extractor.sampling_rate
461
+ if sr != target_sr_stt: wav = torchaudio.transforms.Resample(sr, target_sr_stt)(wav)
462
+ audio_array_stt = wav.squeeze().cpu().numpy()
463
 
 
 
 
 
 
 
 
 
464
  print("STT: Extracting features and transcribing...")
465
+ inputs = stt_processor(audio_array_stt, sampling_rate=target_sr_stt, return_tensors="pt").input_features.to(DEVICE)
 
 
466
  forced_ids = stt_processor.get_decoder_prompt_ids(language="arabic", task="transcribe")
 
467
  with torch.no_grad():
468
+ generated_ids = stt_model.generate(inputs, forced_decoder_ids=forced_ids, max_length=448)
469
+ arabic_transcript = stt_processor.decode(generated_ids[0], skip_special_tokens=True).strip()
470
  print(f"STT Output: {arabic_transcript}")
471
  except Exception as e:
472
  print(f"STT Error: {e}")
 
473
 
474
+ # TTT Stage
475
  english_translation = "TTT Error: Processing failed."
476
  if arabic_transcript and not arabic_transcript.startswith("STT Error"):
477
  try:
478
  print("TTT: Translating to English...")
479
+ batch = mt_tokenizer(arabic_transcript, return_tensors="pt", padding=True).to(DEVICE)
 
 
 
 
480
  with torch.no_grad():
481
  translated_ids = mt_model.generate(**batch, max_length=512)
482
  english_translation = mt_tokenizer.batch_decode(translated_ids, skip_special_tokens=True)[0].strip()
483
  print(f"TTT Output: {english_translation}")
484
  except Exception as e:
485
  print(f"TTT Error: {e}")
486
+ else:
487
+ english_translation = "(Skipped TTT due to STT failure)"
 
 
 
 
488
  print(english_translation)
489
 
490
+ # TTS Stage
491
+ synthesized_audio_np = np.array([]).astype(np.float32)
492
+ if english_translation and not english_translation.startswith("TTT Error"):
493
+ try:
494
+ print("TTS: Synthesizing English speech...")
495
+ sequence = text_to_seq(english_translation).unsqueeze(0).to(DEVICE)
496
+ generated_mel, _ = TTS_MODEL.inference(sequence, max_length=hp.max_mel_time-20, stop_token_threshold=0.5, with_tqdm=False)
497
+
498
+ print(f"TTS: Generated mel shape: {generated_mel.shape if generated_mel is not None else 'None'}")
499
+ if generated_mel is not None and generated_mel.numel() > 0:
500
+ mel_for_vocoder = generated_mel.detach().squeeze(0).transpose(0, 1)
501
+ audio_tensor = inverse_mel_spec_to_wav(mel_for_vocoder)
502
+ synthesized_audio_np = audio_tensor.cpu().numpy()
503
+ print(f"TTS: Synthesized audio shape: {synthesized_audio_np.shape}")
504
+ except Exception as e:
505
+ print(f"TTS Error: {e}")
506
+
507
+ print(f"--- PIPELINE END ---")
508
+ return arabic_transcript, english_translation, (hp.sr, synthesized_audio_np)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
509
 
510
 
511
  # --- Part 4: Gradio Interface Definition ---
512
  # (Same as before)
513
  iface = gr.Interface(
514
+ fn=full_speech_translation_pipeline,
515
  inputs=[
516
  gr.Audio(type="filepath", label="Upload Arabic Speech")
517
  ],