File size: 23,250 Bytes
9d962cb
 
 
 
 
134667d
 
 
 
9d962cb
 
 
 
134667d
 
9d962cb
 
134667d
 
9d962cb
 
 
134667d
 
 
9d962cb
 
 
 
 
 
 
134667d
 
 
 
 
9d962cb
 
134667d
9d962cb
134667d
 
9d962cb
 
134667d
 
 
9d962cb
 
 
 
 
 
 
 
 
 
 
 
 
134667d
9d962cb
 
 
 
 
 
 
134667d
 
 
 
 
 
 
 
9d962cb
 
134667d
9d962cb
 
 
 
 
 
 
 
 
 
 
134667d
 
 
 
9d962cb
134667d
 
 
 
 
 
9d962cb
 
134667d
 
 
 
 
 
 
 
9d962cb
 
 
 
 
 
 
134667d
 
9d962cb
 
134667d
 
9d962cb
134667d
9d962cb
 
 
 
 
134667d
 
 
 
 
 
 
 
 
 
 
 
 
 
9d962cb
 
134667d
 
9d962cb
134667d
 
9d962cb
134667d
9d962cb
 
 
 
 
134667d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d962cb
 
134667d
9d962cb
 
134667d
 
 
 
 
 
 
 
 
9d962cb
134667d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d962cb
 
134667d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d962cb
134667d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d962cb
 
 
 
 
134667d
 
 
 
 
 
9d962cb
 
134667d
 
9d962cb
 
 
 
134667d
 
 
 
 
 
 
9d962cb
 
134667d
 
 
 
 
 
 
 
9d962cb
134667d
 
9d962cb
 
 
 
134667d
9d962cb
 
 
 
134667d
 
 
 
 
 
 
9d962cb
 
134667d
 
 
 
9d962cb
134667d
9d962cb
134667d
 
 
9d962cb
134667d
9d962cb
134667d
9d962cb
 
 
134667d
 
9d962cb
134667d
9d962cb
 
134667d
 
 
 
 
 
 
 
b28da2b
 
 
9d962cb
134667d
 
 
 
9d962cb
 
134667d
9d962cb
 
134667d
9d962cb
 
134667d
 
 
 
 
 
 
 
9d962cb
 
134667d
 
 
9d962cb
134667d
9d962cb
 
 
 
 
134667d
 
 
 
9d962cb
134667d
9d962cb
 
 
 
 
134667d
 
 
 
 
 
9d962cb
134667d
 
 
 
9d962cb
134667d
 
ab9f341
134667d
 
9d962cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134667d
9d962cb
 
 
134667d
9d962cb
 
 
 
 
 
 
 
134667d
 
 
9d962cb
 
 
 
134667d
9d962cb
 
134667d
9d962cb
 
 
134667d
 
9d962cb
 
 
 
134667d
 
9d962cb
134667d
 
 
 
 
 
 
 
 
 
 
 
 
 
9d962cb
134667d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
import os
import re
import time
import random
import numpy as np
import pandas as pd
import math
import shutil
import base64

# Torch and Audio
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import torch.nn.functional as F
import torchaudio
import librosa
import librosa.display

# Text and Audio Processing
from unidecode import unidecode
from inflect import engine
import pydub
import soundfile as sf

# Transformers
from transformers import (
    WhisperProcessor, WhisperForConditionalGeneration,
    MarianTokenizer, MarianMTModel,
)

# API Server
from fastapi import FastAPI, UploadFile, File
from fastapi.middleware.cors import CORSMiddleware
from fastapi.staticfiles import StaticFiles # <--- ADD THIS IMPORT



# Part 2: TTS Model Components (from your notebook)


# Hyperparameters
class Hyperparams:
  seed = 42
  # We won't use these dataset paths, but keep them for hp object integrity
  csv_path = "path/to/metadata.csv"
  wav_path = "path/to/wavs"
  symbols = [
    'EOS', ' ', '!', ',', '-', '.', ';', '?', 'a', 'b', 'c', 'd', 'e', 'f', 
    'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 
    't', 'u', 'v', 'w', 'x', 'y', 'z', 'à', 'â', 'è', 'é', 'ê', 'ü', 
    '’', '“', '”' 
  ]
  sr = 22050
  n_fft = 2048
  n_stft = int((n_fft//2) + 1)
  hop_length = int(n_fft/8.0)
  win_length = int(n_fft/2.0)
  mel_freq = 128
  max_mel_time = 1024
  power = 2.0
  text_num_embeddings = 2*len(symbols)  
  embedding_size = 256
  encoder_embedding_size = 512 
  dim_feedforward = 1024
  postnet_embedding_size = 1024
  encoder_kernel_size = 3
  postnet_kernel_size = 5
  ampl_multiplier = 10.0
  ampl_amin = 1e-10
  db_multiplier = 1.0
  ampl_ref = 1.0
  ampl_power = 1.0
  max_db = 100
  scale_db = 10

hp = Hyperparams()

# Text to Sequence
symbol_to_id = {s: i for i, s in enumerate(hp.symbols)}
def text_to_seq(text):
  text = text.lower()
  seq = []
  for s in text:
    _id = symbol_to_id.get(s, None)
    if _id is not None:
      seq.append(_id)
  seq.append(symbol_to_id["EOS"])
  return torch.IntTensor(seq)

# Audio Processing
spec_transform = torchaudio.transforms.Spectrogram(n_fft=hp.n_fft, win_length=hp.win_length, hop_length=hp.hop_length, power=hp.power)
mel_scale_transform = torchaudio.transforms.MelScale(n_mels=hp.mel_freq, sample_rate=hp.sr, n_stft=hp.n_stft)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
mel_inverse_transform = torchaudio.transforms.InverseMelScale(n_mels=hp.mel_freq, sample_rate=hp.sr, n_stft=hp.n_stft).to(DEVICE)
griffnlim_transform = torchaudio.transforms.GriffinLim(n_fft=hp.n_fft, win_length=hp.win_length, hop_length=hp.hop_length).to(DEVICE)

def pow_to_db_mel_spec(mel_spec):
  mel_spec = torchaudio.functional.amplitude_to_DB(mel_spec, multiplier=hp.ampl_multiplier, amin=hp.ampl_amin, db_multiplier=hp.db_multiplier, top_db=hp.max_db)
  mel_spec = mel_spec/hp.scale_db
  return mel_spec

def db_to_power_mel_spec(mel_spec):
  mel_spec = mel_spec*hp.scale_db
  mel_spec = torchaudio.functional.DB_to_amplitude(mel_spec, ref=hp.ampl_ref, power=hp.ampl_power)  
  return mel_spec

def inverse_mel_spec_to_wav(mel_spec):
  power_mel_spec = db_to_power_mel_spec(mel_spec.to(DEVICE))
  spectrogram = mel_inverse_transform(power_mel_spec)
  pseudo_wav = griffnlim_transform(spectrogram)
  return pseudo_wav

def mask_from_seq_lengths(sequence_lengths: torch.Tensor, max_length: int) -> torch.BoolTensor:
    ones = sequence_lengths.new_ones(sequence_lengths.size(0), max_length)
    range_tensor = ones.cumsum(dim=1)
    return sequence_lengths.unsqueeze(1) >= range_tensor
    
# --- TransformerTTS Model Architecture (Copied from notebook)
class EncoderBlock(nn.Module):
    def __init__(self):
        super(EncoderBlock, self).__init__()
        self.norm_1 = nn.LayerNorm(normalized_shape=hp.embedding_size)
        self.attn = torch.nn.MultiheadAttention(embed_dim=hp.embedding_size, num_heads=4, dropout=0.1, batch_first=True)
        self.dropout_1 = torch.nn.Dropout(0.1)
        self.norm_2 = nn.LayerNorm(normalized_shape=hp.embedding_size)
        self.linear_1 = nn.Linear(hp.embedding_size, hp.dim_feedforward)
        self.dropout_2 = torch.nn.Dropout(0.1)
        self.linear_2 = nn.Linear(hp.dim_feedforward, hp.embedding_size)
        self.dropout_3 = torch.nn.Dropout(0.1)
    def forward(self, x, attn_mask=None, key_padding_mask=None):
        x_out = self.norm_1(x)
        x_out, _ = self.attn(query=x_out, key=x_out, value=x_out, attn_mask=attn_mask, key_padding_mask=key_padding_mask)
        x_out = self.dropout_1(x_out)
        x = x + x_out    
        x_out = self.norm_2(x) 
        x_out = self.linear_1(x_out)
        x_out = F.relu(x_out)
        x_out = self.dropout_2(x_out)
        x_out = self.linear_2(x_out)
        x_out = self.dropout_3(x_out)
        x = x + x_out
        return x

class DecoderBlock(nn.Module):
    def __init__(self):
        super(DecoderBlock, self).__init__()
        self.norm_1 = nn.LayerNorm(normalized_shape=hp.embedding_size)
        self.self_attn = torch.nn.MultiheadAttention(embed_dim=hp.embedding_size, num_heads=4, dropout=0.1, batch_first=True)
        self.dropout_1 = torch.nn.Dropout(0.1)
        self.norm_2 = nn.LayerNorm(normalized_shape=hp.embedding_size)
        self.attn = torch.nn.MultiheadAttention(embed_dim=hp.embedding_size, num_heads=4, dropout=0.1, batch_first=True)    
        self.dropout_2 = torch.nn.Dropout(0.1)
        self.norm_3 = nn.LayerNorm(normalized_shape=hp.embedding_size)
        self.linear_1 = nn.Linear(hp.embedding_size, hp.dim_feedforward)
        self.dropout_3 = torch.nn.Dropout(0.1)
        self.linear_2 = nn.Linear(hp.dim_feedforward, hp.embedding_size)
        self.dropout_4 = torch.nn.Dropout(0.1)
    def forward(self, x, memory, x_attn_mask=None, x_key_padding_mask=None, memory_attn_mask=None, memory_key_padding_mask=None):
        x_out, _ = self.self_attn(query=x, key=x, value=x, attn_mask=x_attn_mask, key_padding_mask=x_key_padding_mask)
        x_out = self.dropout_1(x_out)
        x = self.norm_1(x + x_out)
        x_out, _ = self.attn(query=x, key=memory, value=memory, attn_mask=memory_attn_mask, key_padding_mask=memory_key_padding_mask)
        x_out = self.dropout_2(x_out)
        x = self.norm_2(x + x_out)
        x_out = self.linear_1(x)
        x_out = F.relu(x_out)
        x_out = self.dropout_3(x_out)
        x_out = self.linear_2(x_out)
        x_out = self.dropout_4(x_out)
        x = self.norm_3(x + x_out)
        return x

class EncoderPreNet(nn.Module):
    def __init__(self):
        super(EncoderPreNet, self).__init__()
        self.embedding = nn.Embedding(num_embeddings=hp.text_num_embeddings, embedding_dim=hp.encoder_embedding_size)
        self.linear_1 = nn.Linear(hp.encoder_embedding_size, hp.encoder_embedding_size)
        self.linear_2 = nn.Linear(hp.encoder_embedding_size, hp.embedding_size)
        self.conv_1 = nn.Conv1d(hp.encoder_embedding_size, hp.encoder_embedding_size, kernel_size=hp.encoder_kernel_size, stride=1, padding=int((hp.encoder_kernel_size - 1) / 2), dilation=1)
        self.bn_1 = nn.BatchNorm1d(hp.encoder_embedding_size)
        self.dropout_1 = torch.nn.Dropout(0.5)
        self.conv_2 = nn.Conv1d(hp.encoder_embedding_size, hp.encoder_embedding_size, kernel_size=hp.encoder_kernel_size, stride=1, padding=int((hp.encoder_kernel_size - 1) / 2), dilation=1)
        self.bn_2 = nn.BatchNorm1d(hp.encoder_embedding_size)
        self.dropout_2 = torch.nn.Dropout(0.5)
        self.conv_3 = nn.Conv1d(hp.encoder_embedding_size, hp.encoder_embedding_size, kernel_size=hp.encoder_kernel_size, stride=1, padding=int((hp.encoder_kernel_size - 1) / 2), dilation=1)
        self.bn_3 = nn.BatchNorm1d(hp.encoder_embedding_size)
        self.dropout_3 = torch.nn.Dropout(0.5)    
    def forward(self, text):
        x = self.embedding(text)
        x = self.linear_1(x)
        x = x.transpose(2, 1)
        x = self.conv_1(x)
        x = self.bn_1(x)
        x = F.relu(x)
        x = self.dropout_1(x)
        x = self.conv_2(x)
        x = self.bn_2(x)
        x = F.relu(x)
        x = self.dropout_2(x)
        x = self.conv_3(x)
        x = self.bn_3(x)    
        x = F.relu(x)
        x = self.dropout_3(x)
        x = x.transpose(1, 2)
        x = self.linear_2(x)
        return x

class PostNet(nn.Module):
    def __init__(self):
        super(PostNet, self).__init__()
        self.conv_1 = nn.Conv1d(hp.mel_freq, hp.postnet_embedding_size, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1)
        self.bn_1 = nn.BatchNorm1d(hp.postnet_embedding_size)
        self.dropout_1 = torch.nn.Dropout(0.5)
        self.conv_2 = nn.Conv1d(hp.postnet_embedding_size, hp.postnet_embedding_size, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1)
        self.bn_2 = nn.BatchNorm1d(hp.postnet_embedding_size)
        self.dropout_2 = torch.nn.Dropout(0.5)
        self.conv_3 = nn.Conv1d(hp.postnet_embedding_size, hp.postnet_embedding_size, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1)
        self.bn_3 = nn.BatchNorm1d(hp.postnet_embedding_size)
        self.dropout_3 = torch.nn.Dropout(0.5)
        self.conv_4 = nn.Conv1d(hp.postnet_embedding_size, hp.postnet_embedding_size, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1)
        self.bn_4 = nn.BatchNorm1d(hp.postnet_embedding_size)
        self.dropout_4 = torch.nn.Dropout(0.5)
        self.conv_5 = nn.Conv1d(hp.postnet_embedding_size, hp.postnet_embedding_size, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1)
        self.bn_5 = nn.BatchNorm1d(hp.postnet_embedding_size)
        self.dropout_5 = torch.nn.Dropout(0.5)
        self.conv_6 = nn.Conv1d(hp.postnet_embedding_size, hp.mel_freq, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1)
        self.bn_6 = nn.BatchNorm1d(hp.mel_freq)
        self.dropout_6 = torch.nn.Dropout(0.5)
    def forward(self, x):
        x = x.transpose(2, 1)
        x = self.conv_1(x)
        x = self.bn_1(x); x = torch.tanh(x); x = self.dropout_1(x)
        x = self.conv_2(x)
        x = self.bn_2(x); x = torch.tanh(x); x = self.dropout_2(x)
        x = self.conv_3(x)
        x = self.bn_3(x); x = torch.tanh(x); x = self.dropout_3(x)
        x = self.conv_4(x)
        x = self.bn_4(x); x = torch.tanh(x); x = self.dropout_4(x)
        x = self.conv_5(x)
        x = self.bn_5(x); x = torch.tanh(x); x = self.dropout_5(x)
        x = self.conv_6(x)
        x = self.bn_6(x); x = self.dropout_6(x)
        x = x.transpose(1, 2)
        return x

class DecoderPreNet(nn.Module):
    def __init__(self):
        super(DecoderPreNet, self).__init__()
        self.linear_1 = nn.Linear(hp.mel_freq, hp.embedding_size)
        self.linear_2 = nn.Linear(hp.embedding_size, hp.embedding_size)
    def forward(self, x):
        x = self.linear_1(x)
        x = F.relu(x)
        x = F.dropout(x, p=0.5, training=True)
        x = self.linear_2(x)
        x = F.relu(x)    
        x = F.dropout(x, p=0.5, training=True)
        return x    

class TransformerTTS(nn.Module):
    def __init__(self, device=DEVICE):
        super(TransformerTTS, self).__init__()
        self.encoder_prenet = EncoderPreNet()
        self.decoder_prenet = DecoderPreNet()
        self.postnet = PostNet()
        self.pos_encoding = nn.Embedding(num_embeddings=hp.max_mel_time, embedding_dim=hp.embedding_size)
        self.encoder_block_1 = EncoderBlock()
        self.encoder_block_2 = EncoderBlock()
        self.encoder_block_3 = EncoderBlock()
        self.decoder_block_1 = DecoderBlock()
        self.decoder_block_2 = DecoderBlock()
        self.decoder_block_3 = DecoderBlock()
        self.linear_1 = nn.Linear(hp.embedding_size, hp.mel_freq) 
        self.linear_2 = nn.Linear(hp.embedding_size, 1)
        self.norm_memory = nn.LayerNorm(normalized_shape=hp.embedding_size)
    def forward(self, text, text_len, mel, mel_len):  
        N = text.shape[0]; S = text.shape[1]; TIME = mel.shape[1]
        self.src_key_padding_mask = torch.zeros((N, S), device=text.device).masked_fill(~mask_from_seq_lengths(text_len, max_length=S), float("-inf"))
        self.src_mask = torch.zeros((S, S), device=text.device).masked_fill(torch.triu(torch.full((S, S), True, dtype=torch.bool), diagonal=1).to(text.device), float("-inf"))
        self.tgt_key_padding_mask = torch.zeros((N, TIME), device=mel.device).masked_fill(~mask_from_seq_lengths(mel_len, max_length=TIME), float("-inf"))
        self.tgt_mask = torch.zeros((TIME, TIME), device=mel.device).masked_fill(torch.triu(torch.full((TIME, TIME), True, device=mel.device, dtype=torch.bool), diagonal=1), float("-inf"))
        self.memory_mask = torch.zeros((TIME, S), device=mel.device).masked_fill(torch.triu(torch.full((TIME, S), True, device=mel.device, dtype=torch.bool), diagonal=1), float("-inf"))    
        text_x = self.encoder_prenet(text) 
        pos_codes = self.pos_encoding(torch.arange(hp.max_mel_time).to(mel.device))
        S = text_x.shape[1]; text_x = text_x + pos_codes[:S]
        text_x = self.encoder_block_1(text_x, attn_mask = self.src_mask, key_padding_mask = self.src_key_padding_mask)
        text_x = self.encoder_block_2(text_x, attn_mask = self.src_mask, key_padding_mask = self.src_key_padding_mask)    
        text_x = self.encoder_block_3(text_x, attn_mask = self.src_mask, key_padding_mask = self.src_key_padding_mask)
        text_x = self.norm_memory(text_x)
        mel_x = self.decoder_prenet(mel); mel_x = mel_x + pos_codes[:TIME]
        mel_x = self.decoder_block_1(x=mel_x, memory=text_x, x_attn_mask=self.tgt_mask, x_key_padding_mask=self.tgt_key_padding_mask, memory_attn_mask=self.memory_mask, memory_key_padding_mask=self.src_key_padding_mask)
        mel_x = self.decoder_block_2(x=mel_x, memory=text_x, x_attn_mask=self.tgt_mask, x_key_padding_mask=self.tgt_key_padding_mask, memory_attn_mask=self.memory_mask, memory_key_padding_mask=self.src_key_padding_mask)
        mel_x = self.decoder_block_3(x=mel_x, memory=text_x, x_attn_mask=self.tgt_mask, x_key_padding_mask=self.tgt_key_padding_mask, memory_attn_mask=self.memory_mask, memory_key_padding_mask=self.src_key_padding_mask)
        mel_linear = self.linear_1(mel_x)
        mel_postnet = self.postnet(mel_linear)
        mel_postnet = mel_linear + mel_postnet
        stop_token = self.linear_2(mel_x)
        bool_mel_mask = self.tgt_key_padding_mask.ne(0).unsqueeze(-1).repeat(1, 1, hp.mel_freq)
        mel_linear = mel_linear.masked_fill(bool_mel_mask, 0)
        mel_postnet = mel_postnet.masked_fill(bool_mel_mask, 0)
        stop_token = stop_token.masked_fill(bool_mel_mask[:, :, 0].unsqueeze(-1), 1e3).squeeze(2)
        return mel_postnet, mel_linear, stop_token 

    @torch.no_grad()
    def inference(self, text, max_length=800, stop_token_threshold=0.5, with_tqdm=True):
        self.eval(); self.train(False)
        text_lengths = torch.tensor(text.shape[1]).unsqueeze(0).to(DEVICE)
        N = 1
        SOS = torch.zeros((N, 1, hp.mel_freq), device=DEVICE)
        mel_padded = SOS
        mel_lengths = torch.tensor(1).unsqueeze(0).to(DEVICE)
        stop_token_outputs = torch.FloatTensor([]).to(text.device)
        iters = range(max_length)
        for _ in iters:
            mel_postnet, mel_linear, stop_token = self(text, text_lengths, mel_padded, mel_lengths)
            mel_padded = torch.cat([mel_padded, mel_postnet[:, -1:, :]], dim=1)
            if torch.sigmoid(stop_token[:, -1]) > stop_token_threshold:      
                break
            else:
                stop_token_outputs = torch.cat([stop_token_outputs, stop_token[:, -1:]], dim=1)
                mel_lengths = torch.tensor(mel_padded.shape[1]).unsqueeze(0).to(DEVICE)
        return mel_postnet, stop_token_outputs
        
# Part 3: Model Loading


# IMPORTANT: These paths assume you have placed the downloaded models
# into a 'models' subfolder in your project directory.
# ---------------------------------
# --- Part 3: Model Loading (from Hugging Face Hub)
# ---------------------------------

# IMPORTANT: Replace "your-username" with your Hugging Face username
# and the model names with the ones you created on the Hub.
TTS_MODEL_HUB_ID = "MoHamdyy/transformer-tts-ljspeech"
ASR_HUB_ID       = "MoHamdyy/whisper-stt-model"
MARIAN_HUB_ID    = "MoHamdyy/marian-ar-en-translation"

# Helper function to download the TTS model file from the Hub
from huggingface_hub import hf_hub_download

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print("Loading models from Hugging Face Hub to device:", DEVICE)

# Load TTS Model from Hub
try:
    print("Loading TTS model...")
    # Download the .pt file from its repo
    tts_model_path = hf_hub_download(repo_id=TTS_MODEL_HUB_ID, filename="train_SimpleTransfromerTTS.pt")
    state = torch.load(tts_model_path, map_location=DEVICE)
    TTS_MODEL = TransformerTTS().to(DEVICE)
    # Check for the correct key in the state dictionary
    if "model" in state:
        TTS_MODEL.load_state_dict(state["model"])
    elif "state_dict" in state:
        TTS_MODEL.load_state_dict(state["state_dict"])
    else:
        TTS_MODEL.load_state_dict(state) # Assume the whole file is the state_dict
    TTS_MODEL.eval()
    print("TTS model loaded successfully.")
except Exception as e:
    print(f"Error loading TTS model: {e}")
    TTS_MODEL = None

# Load STT (Whisper) Model from Hub
try:
    print("Loading STT (Whisper) model...")
    stt_processor = WhisperProcessor.from_pretrained(ASR_HUB_ID)
    stt_model = WhisperForConditionalGeneration.from_pretrained(ASR_HUB_ID).to(DEVICE).eval()
    print("STT model loaded successfully.")
except Exception as e:
    print(f"Error loading STT model: {e}")
    stt_processor = None
    stt_model = None

# Load TTT (MarianMT) Model from Hub
try:
    print("Loading TTT (MarianMT) model...")
    mt_tokenizer = MarianTokenizer.from_pretrained(MARIAN_HUB_ID)
    mt_model = MarianMTModel.from_pretrained(MARIAN_HUB_ID).to(DEVICE).eval()
    print("TTT model loaded successfully.")
except Exception as e:
    print(f"Error loading TTT model: {e}")
    mt_tokenizer = None
    mt_model = None



# Part 4: Full Pipeline Function


def full_speech_translation_pipeline(audio_input_path: str):
    print(f"--- PIPELINE START: Processing {audio_input_path} ---")
    if audio_input_path is None or not os.path.exists(audio_input_path):
        msg = "Error: Audio file not provided or not found."
        print(msg)
        # Return empty/default values
        return "Error: No file", "", (hp.sr, np.array([]).astype(np.float32))

    # STT Stage
    arabic_transcript = "STT Error: Processing failed."
    try:
        print("STT: Loading and resampling audio...")
        wav, sr = torchaudio.load(audio_input_path)
        if wav.size(0) > 1: wav = wav.mean(dim=0, keepdim=True)
        target_sr_stt = stt_processor.feature_extractor.sampling_rate
        if sr != target_sr_stt: wav = torchaudio.transforms.Resample(sr, target_sr_stt)(wav)
        audio_array_stt = wav.squeeze().cpu().numpy()
        
        print("STT: Extracting features and transcribing...")
        inputs = stt_processor(audio_array_stt, sampling_rate=target_sr_stt, return_tensors="pt").input_features.to(DEVICE)
        forced_ids = stt_processor.get_decoder_prompt_ids(language="arabic", task="transcribe")
        with torch.no_grad():
            generated_ids = stt_model.generate(inputs, forced_decoder_ids=forced_ids, max_length=448)
        arabic_transcript = stt_processor.decode(generated_ids[0], skip_special_tokens=True).strip()
        print(f"STT Output: {arabic_transcript}")
    except Exception as e:
        print(f"STT Error: {e}")

    # TTT Stage
    english_translation = "TTT Error: Processing failed."
    if arabic_transcript and not arabic_transcript.startswith("STT Error"):
        try:
            print("TTT: Translating to English...")
            batch = mt_tokenizer(arabic_transcript, return_tensors="pt", padding=True).to(DEVICE)
            with torch.no_grad():
                translated_ids = mt_model.generate(**batch, max_length=512)
            english_translation = mt_tokenizer.batch_decode(translated_ids, skip_special_tokens=True)[0].strip()
            print(f"TTT Output: {english_translation}")
        except Exception as e:
            print(f"TTT Error: {e}")
    else:
        english_translation = "(Skipped TTT due to STT failure)"
        print(english_translation)

    # TTS Stage
    synthesized_audio_np = np.array([]).astype(np.float32)
    if english_translation and not english_translation.startswith("TTT Error"):
        try:
            print("TTS: Synthesizing English speech...")
            sequence = text_to_seq(english_translation).unsqueeze(0).to(DEVICE)
            generated_mel, _ = TTS_MODEL.inference(sequence, max_length=hp.max_mel_time-20, stop_token_threshold=0.5, with_tqdm=False)
            
            print(f"TTS: Generated mel shape: {generated_mel.shape if generated_mel is not None else 'None'}")
            if generated_mel is not None and generated_mel.numel() > 0:
                mel_for_vocoder = generated_mel.detach().squeeze(0).transpose(0, 1)
                audio_tensor = inverse_mel_spec_to_wav(mel_for_vocoder)
                synthesized_audio_np = audio_tensor.cpu().numpy()
                print(f"TTS: Synthesized audio shape: {synthesized_audio_np.shape}")
        except Exception as e:
            print(f"TTS Error: {e}")
    
    print(f"--- PIPELINE END ---")
    return arabic_transcript, english_translation, (hp.sr, synthesized_audio_np)


# Part 5: FastAPI Application

app = FastAPI()

# Allow Cross-Origin Resource Sharing (CORS) for your frontend
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  # Allows all origins
    allow_credentials=True,
    allow_methods=["*"],  # Allows all methods
    allow_headers=["*"],  # Allows all headers
)

@app.post("/process-speech/")
async def create_upload_file(file: UploadFile = File(...)):
    # Save the uploaded file temporarily
    temp_path = f"/tmp/{file.filename}"
    with open(temp_path, "wb") as buffer:
        shutil.copyfileobj(file.file, buffer)
    
    # Run the full pipeline
    arabic, english, (sr, audio_np) = full_speech_translation_pipeline(temp_path)
    
    # Prepare the audio to be sent back as base64
    audio_base64 = ""
    if audio_np.size > 0:
        temp_wav_path = "/tmp/output.wav"
        sf.write(temp_wav_path, audio_np, sr)
        with open(temp_wav_path, "rb") as wav_file:
            audio_bytes = wav_file.read()
            audio_base64 = base64.b64encode(audio_bytes).decode('utf-8')
    
    # Return all results in a single JSON response
    return {
        "arabic_transcript": arabic,
        "english_translation": english,
        "audio_data": {
            "sample_rate": sr,
            "base64": audio_base64
        }
    }
app.mount("/", StaticFiles(directory="static", html=True), name="static")