MoHamdyy's picture
changed app to gradio
134667d
raw
history blame
23.3 kB
import os
import re
import time
import random
import numpy as np
import pandas as pd
import math
import shutil
import base64
# Torch and Audio
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import torch.nn.functional as F
import torchaudio
import librosa
import librosa.display
# Text and Audio Processing
from unidecode import unidecode
from inflect import engine
import pydub
import soundfile as sf
# Transformers
from transformers import (
WhisperProcessor, WhisperForConditionalGeneration,
MarianTokenizer, MarianMTModel,
)
# API Server
from fastapi import FastAPI, UploadFile, File
from fastapi.middleware.cors import CORSMiddleware
from fastapi.staticfiles import StaticFiles # <--- ADD THIS IMPORT
# Part 2: TTS Model Components (from your notebook)
# Hyperparameters
class Hyperparams:
seed = 42
# We won't use these dataset paths, but keep them for hp object integrity
csv_path = "path/to/metadata.csv"
wav_path = "path/to/wavs"
symbols = [
'EOS', ' ', '!', ',', '-', '.', ';', '?', 'a', 'b', 'c', 'd', 'e', 'f',
'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's',
't', 'u', 'v', 'w', 'x', 'y', 'z', 'à', 'â', 'è', 'é', 'ê', 'ü',
'’', '“', '”'
]
sr = 22050
n_fft = 2048
n_stft = int((n_fft//2) + 1)
hop_length = int(n_fft/8.0)
win_length = int(n_fft/2.0)
mel_freq = 128
max_mel_time = 1024
power = 2.0
text_num_embeddings = 2*len(symbols)
embedding_size = 256
encoder_embedding_size = 512
dim_feedforward = 1024
postnet_embedding_size = 1024
encoder_kernel_size = 3
postnet_kernel_size = 5
ampl_multiplier = 10.0
ampl_amin = 1e-10
db_multiplier = 1.0
ampl_ref = 1.0
ampl_power = 1.0
max_db = 100
scale_db = 10
hp = Hyperparams()
# Text to Sequence
symbol_to_id = {s: i for i, s in enumerate(hp.symbols)}
def text_to_seq(text):
text = text.lower()
seq = []
for s in text:
_id = symbol_to_id.get(s, None)
if _id is not None:
seq.append(_id)
seq.append(symbol_to_id["EOS"])
return torch.IntTensor(seq)
# Audio Processing
spec_transform = torchaudio.transforms.Spectrogram(n_fft=hp.n_fft, win_length=hp.win_length, hop_length=hp.hop_length, power=hp.power)
mel_scale_transform = torchaudio.transforms.MelScale(n_mels=hp.mel_freq, sample_rate=hp.sr, n_stft=hp.n_stft)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
mel_inverse_transform = torchaudio.transforms.InverseMelScale(n_mels=hp.mel_freq, sample_rate=hp.sr, n_stft=hp.n_stft).to(DEVICE)
griffnlim_transform = torchaudio.transforms.GriffinLim(n_fft=hp.n_fft, win_length=hp.win_length, hop_length=hp.hop_length).to(DEVICE)
def pow_to_db_mel_spec(mel_spec):
mel_spec = torchaudio.functional.amplitude_to_DB(mel_spec, multiplier=hp.ampl_multiplier, amin=hp.ampl_amin, db_multiplier=hp.db_multiplier, top_db=hp.max_db)
mel_spec = mel_spec/hp.scale_db
return mel_spec
def db_to_power_mel_spec(mel_spec):
mel_spec = mel_spec*hp.scale_db
mel_spec = torchaudio.functional.DB_to_amplitude(mel_spec, ref=hp.ampl_ref, power=hp.ampl_power)
return mel_spec
def inverse_mel_spec_to_wav(mel_spec):
power_mel_spec = db_to_power_mel_spec(mel_spec.to(DEVICE))
spectrogram = mel_inverse_transform(power_mel_spec)
pseudo_wav = griffnlim_transform(spectrogram)
return pseudo_wav
def mask_from_seq_lengths(sequence_lengths: torch.Tensor, max_length: int) -> torch.BoolTensor:
ones = sequence_lengths.new_ones(sequence_lengths.size(0), max_length)
range_tensor = ones.cumsum(dim=1)
return sequence_lengths.unsqueeze(1) >= range_tensor
# --- TransformerTTS Model Architecture (Copied from notebook)
class EncoderBlock(nn.Module):
def __init__(self):
super(EncoderBlock, self).__init__()
self.norm_1 = nn.LayerNorm(normalized_shape=hp.embedding_size)
self.attn = torch.nn.MultiheadAttention(embed_dim=hp.embedding_size, num_heads=4, dropout=0.1, batch_first=True)
self.dropout_1 = torch.nn.Dropout(0.1)
self.norm_2 = nn.LayerNorm(normalized_shape=hp.embedding_size)
self.linear_1 = nn.Linear(hp.embedding_size, hp.dim_feedforward)
self.dropout_2 = torch.nn.Dropout(0.1)
self.linear_2 = nn.Linear(hp.dim_feedforward, hp.embedding_size)
self.dropout_3 = torch.nn.Dropout(0.1)
def forward(self, x, attn_mask=None, key_padding_mask=None):
x_out = self.norm_1(x)
x_out, _ = self.attn(query=x_out, key=x_out, value=x_out, attn_mask=attn_mask, key_padding_mask=key_padding_mask)
x_out = self.dropout_1(x_out)
x = x + x_out
x_out = self.norm_2(x)
x_out = self.linear_1(x_out)
x_out = F.relu(x_out)
x_out = self.dropout_2(x_out)
x_out = self.linear_2(x_out)
x_out = self.dropout_3(x_out)
x = x + x_out
return x
class DecoderBlock(nn.Module):
def __init__(self):
super(DecoderBlock, self).__init__()
self.norm_1 = nn.LayerNorm(normalized_shape=hp.embedding_size)
self.self_attn = torch.nn.MultiheadAttention(embed_dim=hp.embedding_size, num_heads=4, dropout=0.1, batch_first=True)
self.dropout_1 = torch.nn.Dropout(0.1)
self.norm_2 = nn.LayerNorm(normalized_shape=hp.embedding_size)
self.attn = torch.nn.MultiheadAttention(embed_dim=hp.embedding_size, num_heads=4, dropout=0.1, batch_first=True)
self.dropout_2 = torch.nn.Dropout(0.1)
self.norm_3 = nn.LayerNorm(normalized_shape=hp.embedding_size)
self.linear_1 = nn.Linear(hp.embedding_size, hp.dim_feedforward)
self.dropout_3 = torch.nn.Dropout(0.1)
self.linear_2 = nn.Linear(hp.dim_feedforward, hp.embedding_size)
self.dropout_4 = torch.nn.Dropout(0.1)
def forward(self, x, memory, x_attn_mask=None, x_key_padding_mask=None, memory_attn_mask=None, memory_key_padding_mask=None):
x_out, _ = self.self_attn(query=x, key=x, value=x, attn_mask=x_attn_mask, key_padding_mask=x_key_padding_mask)
x_out = self.dropout_1(x_out)
x = self.norm_1(x + x_out)
x_out, _ = self.attn(query=x, key=memory, value=memory, attn_mask=memory_attn_mask, key_padding_mask=memory_key_padding_mask)
x_out = self.dropout_2(x_out)
x = self.norm_2(x + x_out)
x_out = self.linear_1(x)
x_out = F.relu(x_out)
x_out = self.dropout_3(x_out)
x_out = self.linear_2(x_out)
x_out = self.dropout_4(x_out)
x = self.norm_3(x + x_out)
return x
class EncoderPreNet(nn.Module):
def __init__(self):
super(EncoderPreNet, self).__init__()
self.embedding = nn.Embedding(num_embeddings=hp.text_num_embeddings, embedding_dim=hp.encoder_embedding_size)
self.linear_1 = nn.Linear(hp.encoder_embedding_size, hp.encoder_embedding_size)
self.linear_2 = nn.Linear(hp.encoder_embedding_size, hp.embedding_size)
self.conv_1 = nn.Conv1d(hp.encoder_embedding_size, hp.encoder_embedding_size, kernel_size=hp.encoder_kernel_size, stride=1, padding=int((hp.encoder_kernel_size - 1) / 2), dilation=1)
self.bn_1 = nn.BatchNorm1d(hp.encoder_embedding_size)
self.dropout_1 = torch.nn.Dropout(0.5)
self.conv_2 = nn.Conv1d(hp.encoder_embedding_size, hp.encoder_embedding_size, kernel_size=hp.encoder_kernel_size, stride=1, padding=int((hp.encoder_kernel_size - 1) / 2), dilation=1)
self.bn_2 = nn.BatchNorm1d(hp.encoder_embedding_size)
self.dropout_2 = torch.nn.Dropout(0.5)
self.conv_3 = nn.Conv1d(hp.encoder_embedding_size, hp.encoder_embedding_size, kernel_size=hp.encoder_kernel_size, stride=1, padding=int((hp.encoder_kernel_size - 1) / 2), dilation=1)
self.bn_3 = nn.BatchNorm1d(hp.encoder_embedding_size)
self.dropout_3 = torch.nn.Dropout(0.5)
def forward(self, text):
x = self.embedding(text)
x = self.linear_1(x)
x = x.transpose(2, 1)
x = self.conv_1(x)
x = self.bn_1(x)
x = F.relu(x)
x = self.dropout_1(x)
x = self.conv_2(x)
x = self.bn_2(x)
x = F.relu(x)
x = self.dropout_2(x)
x = self.conv_3(x)
x = self.bn_3(x)
x = F.relu(x)
x = self.dropout_3(x)
x = x.transpose(1, 2)
x = self.linear_2(x)
return x
class PostNet(nn.Module):
def __init__(self):
super(PostNet, self).__init__()
self.conv_1 = nn.Conv1d(hp.mel_freq, hp.postnet_embedding_size, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1)
self.bn_1 = nn.BatchNorm1d(hp.postnet_embedding_size)
self.dropout_1 = torch.nn.Dropout(0.5)
self.conv_2 = nn.Conv1d(hp.postnet_embedding_size, hp.postnet_embedding_size, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1)
self.bn_2 = nn.BatchNorm1d(hp.postnet_embedding_size)
self.dropout_2 = torch.nn.Dropout(0.5)
self.conv_3 = nn.Conv1d(hp.postnet_embedding_size, hp.postnet_embedding_size, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1)
self.bn_3 = nn.BatchNorm1d(hp.postnet_embedding_size)
self.dropout_3 = torch.nn.Dropout(0.5)
self.conv_4 = nn.Conv1d(hp.postnet_embedding_size, hp.postnet_embedding_size, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1)
self.bn_4 = nn.BatchNorm1d(hp.postnet_embedding_size)
self.dropout_4 = torch.nn.Dropout(0.5)
self.conv_5 = nn.Conv1d(hp.postnet_embedding_size, hp.postnet_embedding_size, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1)
self.bn_5 = nn.BatchNorm1d(hp.postnet_embedding_size)
self.dropout_5 = torch.nn.Dropout(0.5)
self.conv_6 = nn.Conv1d(hp.postnet_embedding_size, hp.mel_freq, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1)
self.bn_6 = nn.BatchNorm1d(hp.mel_freq)
self.dropout_6 = torch.nn.Dropout(0.5)
def forward(self, x):
x = x.transpose(2, 1)
x = self.conv_1(x)
x = self.bn_1(x); x = torch.tanh(x); x = self.dropout_1(x)
x = self.conv_2(x)
x = self.bn_2(x); x = torch.tanh(x); x = self.dropout_2(x)
x = self.conv_3(x)
x = self.bn_3(x); x = torch.tanh(x); x = self.dropout_3(x)
x = self.conv_4(x)
x = self.bn_4(x); x = torch.tanh(x); x = self.dropout_4(x)
x = self.conv_5(x)
x = self.bn_5(x); x = torch.tanh(x); x = self.dropout_5(x)
x = self.conv_6(x)
x = self.bn_6(x); x = self.dropout_6(x)
x = x.transpose(1, 2)
return x
class DecoderPreNet(nn.Module):
def __init__(self):
super(DecoderPreNet, self).__init__()
self.linear_1 = nn.Linear(hp.mel_freq, hp.embedding_size)
self.linear_2 = nn.Linear(hp.embedding_size, hp.embedding_size)
def forward(self, x):
x = self.linear_1(x)
x = F.relu(x)
x = F.dropout(x, p=0.5, training=True)
x = self.linear_2(x)
x = F.relu(x)
x = F.dropout(x, p=0.5, training=True)
return x
class TransformerTTS(nn.Module):
def __init__(self, device=DEVICE):
super(TransformerTTS, self).__init__()
self.encoder_prenet = EncoderPreNet()
self.decoder_prenet = DecoderPreNet()
self.postnet = PostNet()
self.pos_encoding = nn.Embedding(num_embeddings=hp.max_mel_time, embedding_dim=hp.embedding_size)
self.encoder_block_1 = EncoderBlock()
self.encoder_block_2 = EncoderBlock()
self.encoder_block_3 = EncoderBlock()
self.decoder_block_1 = DecoderBlock()
self.decoder_block_2 = DecoderBlock()
self.decoder_block_3 = DecoderBlock()
self.linear_1 = nn.Linear(hp.embedding_size, hp.mel_freq)
self.linear_2 = nn.Linear(hp.embedding_size, 1)
self.norm_memory = nn.LayerNorm(normalized_shape=hp.embedding_size)
def forward(self, text, text_len, mel, mel_len):
N = text.shape[0]; S = text.shape[1]; TIME = mel.shape[1]
self.src_key_padding_mask = torch.zeros((N, S), device=text.device).masked_fill(~mask_from_seq_lengths(text_len, max_length=S), float("-inf"))
self.src_mask = torch.zeros((S, S), device=text.device).masked_fill(torch.triu(torch.full((S, S), True, dtype=torch.bool), diagonal=1).to(text.device), float("-inf"))
self.tgt_key_padding_mask = torch.zeros((N, TIME), device=mel.device).masked_fill(~mask_from_seq_lengths(mel_len, max_length=TIME), float("-inf"))
self.tgt_mask = torch.zeros((TIME, TIME), device=mel.device).masked_fill(torch.triu(torch.full((TIME, TIME), True, device=mel.device, dtype=torch.bool), diagonal=1), float("-inf"))
self.memory_mask = torch.zeros((TIME, S), device=mel.device).masked_fill(torch.triu(torch.full((TIME, S), True, device=mel.device, dtype=torch.bool), diagonal=1), float("-inf"))
text_x = self.encoder_prenet(text)
pos_codes = self.pos_encoding(torch.arange(hp.max_mel_time).to(mel.device))
S = text_x.shape[1]; text_x = text_x + pos_codes[:S]
text_x = self.encoder_block_1(text_x, attn_mask = self.src_mask, key_padding_mask = self.src_key_padding_mask)
text_x = self.encoder_block_2(text_x, attn_mask = self.src_mask, key_padding_mask = self.src_key_padding_mask)
text_x = self.encoder_block_3(text_x, attn_mask = self.src_mask, key_padding_mask = self.src_key_padding_mask)
text_x = self.norm_memory(text_x)
mel_x = self.decoder_prenet(mel); mel_x = mel_x + pos_codes[:TIME]
mel_x = self.decoder_block_1(x=mel_x, memory=text_x, x_attn_mask=self.tgt_mask, x_key_padding_mask=self.tgt_key_padding_mask, memory_attn_mask=self.memory_mask, memory_key_padding_mask=self.src_key_padding_mask)
mel_x = self.decoder_block_2(x=mel_x, memory=text_x, x_attn_mask=self.tgt_mask, x_key_padding_mask=self.tgt_key_padding_mask, memory_attn_mask=self.memory_mask, memory_key_padding_mask=self.src_key_padding_mask)
mel_x = self.decoder_block_3(x=mel_x, memory=text_x, x_attn_mask=self.tgt_mask, x_key_padding_mask=self.tgt_key_padding_mask, memory_attn_mask=self.memory_mask, memory_key_padding_mask=self.src_key_padding_mask)
mel_linear = self.linear_1(mel_x)
mel_postnet = self.postnet(mel_linear)
mel_postnet = mel_linear + mel_postnet
stop_token = self.linear_2(mel_x)
bool_mel_mask = self.tgt_key_padding_mask.ne(0).unsqueeze(-1).repeat(1, 1, hp.mel_freq)
mel_linear = mel_linear.masked_fill(bool_mel_mask, 0)
mel_postnet = mel_postnet.masked_fill(bool_mel_mask, 0)
stop_token = stop_token.masked_fill(bool_mel_mask[:, :, 0].unsqueeze(-1), 1e3).squeeze(2)
return mel_postnet, mel_linear, stop_token
@torch.no_grad()
def inference(self, text, max_length=800, stop_token_threshold=0.5, with_tqdm=True):
self.eval(); self.train(False)
text_lengths = torch.tensor(text.shape[1]).unsqueeze(0).to(DEVICE)
N = 1
SOS = torch.zeros((N, 1, hp.mel_freq), device=DEVICE)
mel_padded = SOS
mel_lengths = torch.tensor(1).unsqueeze(0).to(DEVICE)
stop_token_outputs = torch.FloatTensor([]).to(text.device)
iters = range(max_length)
for _ in iters:
mel_postnet, mel_linear, stop_token = self(text, text_lengths, mel_padded, mel_lengths)
mel_padded = torch.cat([mel_padded, mel_postnet[:, -1:, :]], dim=1)
if torch.sigmoid(stop_token[:, -1]) > stop_token_threshold:
break
else:
stop_token_outputs = torch.cat([stop_token_outputs, stop_token[:, -1:]], dim=1)
mel_lengths = torch.tensor(mel_padded.shape[1]).unsqueeze(0).to(DEVICE)
return mel_postnet, stop_token_outputs
# Part 3: Model Loading
# IMPORTANT: These paths assume you have placed the downloaded models
# into a 'models' subfolder in your project directory.
# ---------------------------------
# --- Part 3: Model Loading (from Hugging Face Hub)
# ---------------------------------
# IMPORTANT: Replace "your-username" with your Hugging Face username
# and the model names with the ones you created on the Hub.
TTS_MODEL_HUB_ID = "MoHamdyy/transformer-tts-ljspeech"
ASR_HUB_ID = "MoHamdyy/whisper-stt-model"
MARIAN_HUB_ID = "MoHamdyy/marian-ar-en-translation"
# Helper function to download the TTS model file from the Hub
from huggingface_hub import hf_hub_download
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print("Loading models from Hugging Face Hub to device:", DEVICE)
# Load TTS Model from Hub
try:
print("Loading TTS model...")
# Download the .pt file from its repo
tts_model_path = hf_hub_download(repo_id=TTS_MODEL_HUB_ID, filename="train_SimpleTransfromerTTS.pt")
state = torch.load(tts_model_path, map_location=DEVICE)
TTS_MODEL = TransformerTTS().to(DEVICE)
# Check for the correct key in the state dictionary
if "model" in state:
TTS_MODEL.load_state_dict(state["model"])
elif "state_dict" in state:
TTS_MODEL.load_state_dict(state["state_dict"])
else:
TTS_MODEL.load_state_dict(state) # Assume the whole file is the state_dict
TTS_MODEL.eval()
print("TTS model loaded successfully.")
except Exception as e:
print(f"Error loading TTS model: {e}")
TTS_MODEL = None
# Load STT (Whisper) Model from Hub
try:
print("Loading STT (Whisper) model...")
stt_processor = WhisperProcessor.from_pretrained(ASR_HUB_ID)
stt_model = WhisperForConditionalGeneration.from_pretrained(ASR_HUB_ID).to(DEVICE).eval()
print("STT model loaded successfully.")
except Exception as e:
print(f"Error loading STT model: {e}")
stt_processor = None
stt_model = None
# Load TTT (MarianMT) Model from Hub
try:
print("Loading TTT (MarianMT) model...")
mt_tokenizer = MarianTokenizer.from_pretrained(MARIAN_HUB_ID)
mt_model = MarianMTModel.from_pretrained(MARIAN_HUB_ID).to(DEVICE).eval()
print("TTT model loaded successfully.")
except Exception as e:
print(f"Error loading TTT model: {e}")
mt_tokenizer = None
mt_model = None
# Part 4: Full Pipeline Function
def full_speech_translation_pipeline(audio_input_path: str):
print(f"--- PIPELINE START: Processing {audio_input_path} ---")
if audio_input_path is None or not os.path.exists(audio_input_path):
msg = "Error: Audio file not provided or not found."
print(msg)
# Return empty/default values
return "Error: No file", "", (hp.sr, np.array([]).astype(np.float32))
# STT Stage
arabic_transcript = "STT Error: Processing failed."
try:
print("STT: Loading and resampling audio...")
wav, sr = torchaudio.load(audio_input_path)
if wav.size(0) > 1: wav = wav.mean(dim=0, keepdim=True)
target_sr_stt = stt_processor.feature_extractor.sampling_rate
if sr != target_sr_stt: wav = torchaudio.transforms.Resample(sr, target_sr_stt)(wav)
audio_array_stt = wav.squeeze().cpu().numpy()
print("STT: Extracting features and transcribing...")
inputs = stt_processor(audio_array_stt, sampling_rate=target_sr_stt, return_tensors="pt").input_features.to(DEVICE)
forced_ids = stt_processor.get_decoder_prompt_ids(language="arabic", task="transcribe")
with torch.no_grad():
generated_ids = stt_model.generate(inputs, forced_decoder_ids=forced_ids, max_length=448)
arabic_transcript = stt_processor.decode(generated_ids[0], skip_special_tokens=True).strip()
print(f"STT Output: {arabic_transcript}")
except Exception as e:
print(f"STT Error: {e}")
# TTT Stage
english_translation = "TTT Error: Processing failed."
if arabic_transcript and not arabic_transcript.startswith("STT Error"):
try:
print("TTT: Translating to English...")
batch = mt_tokenizer(arabic_transcript, return_tensors="pt", padding=True).to(DEVICE)
with torch.no_grad():
translated_ids = mt_model.generate(**batch, max_length=512)
english_translation = mt_tokenizer.batch_decode(translated_ids, skip_special_tokens=True)[0].strip()
print(f"TTT Output: {english_translation}")
except Exception as e:
print(f"TTT Error: {e}")
else:
english_translation = "(Skipped TTT due to STT failure)"
print(english_translation)
# TTS Stage
synthesized_audio_np = np.array([]).astype(np.float32)
if english_translation and not english_translation.startswith("TTT Error"):
try:
print("TTS: Synthesizing English speech...")
sequence = text_to_seq(english_translation).unsqueeze(0).to(DEVICE)
generated_mel, _ = TTS_MODEL.inference(sequence, max_length=hp.max_mel_time-20, stop_token_threshold=0.5, with_tqdm=False)
print(f"TTS: Generated mel shape: {generated_mel.shape if generated_mel is not None else 'None'}")
if generated_mel is not None and generated_mel.numel() > 0:
mel_for_vocoder = generated_mel.detach().squeeze(0).transpose(0, 1)
audio_tensor = inverse_mel_spec_to_wav(mel_for_vocoder)
synthesized_audio_np = audio_tensor.cpu().numpy()
print(f"TTS: Synthesized audio shape: {synthesized_audio_np.shape}")
except Exception as e:
print(f"TTS Error: {e}")
print(f"--- PIPELINE END ---")
return arabic_transcript, english_translation, (hp.sr, synthesized_audio_np)
# Part 5: FastAPI Application
app = FastAPI()
# Allow Cross-Origin Resource Sharing (CORS) for your frontend
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Allows all origins
allow_credentials=True,
allow_methods=["*"], # Allows all methods
allow_headers=["*"], # Allows all headers
)
@app.post("/process-speech/")
async def create_upload_file(file: UploadFile = File(...)):
# Save the uploaded file temporarily
temp_path = f"/tmp/{file.filename}"
with open(temp_path, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
# Run the full pipeline
arabic, english, (sr, audio_np) = full_speech_translation_pipeline(temp_path)
# Prepare the audio to be sent back as base64
audio_base64 = ""
if audio_np.size > 0:
temp_wav_path = "/tmp/output.wav"
sf.write(temp_wav_path, audio_np, sr)
with open(temp_wav_path, "rb") as wav_file:
audio_bytes = wav_file.read()
audio_base64 = base64.b64encode(audio_bytes).decode('utf-8')
# Return all results in a single JSON response
return {
"arabic_transcript": arabic,
"english_translation": english,
"audio_data": {
"sample_rate": sr,
"base64": audio_base64
}
}
app.mount("/", StaticFiles(directory="static", html=True), name="static")