Spaces:
Sleeping
Sleeping
import os | |
import re | |
import time | |
import random | |
import numpy as np | |
import pandas as pd | |
import math | |
import shutil | |
import base64 | |
# Torch and Audio | |
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
from torch.utils.data import Dataset, DataLoader | |
import torch.nn.functional as F | |
import torchaudio | |
import librosa | |
import librosa.display | |
# Text and Audio Processing | |
from unidecode import unidecode | |
from inflect import engine | |
import pydub | |
import soundfile as sf | |
# Transformers | |
from transformers import ( | |
WhisperProcessor, WhisperForConditionalGeneration, | |
MarianTokenizer, MarianMTModel, | |
) | |
# API Server | |
from fastapi import FastAPI, UploadFile, File | |
from fastapi.middleware.cors import CORSMiddleware | |
from fastapi.staticfiles import StaticFiles # <--- ADD THIS IMPORT | |
# Part 2: TTS Model Components (from your notebook) | |
# Hyperparameters | |
class Hyperparams: | |
seed = 42 | |
# We won't use these dataset paths, but keep them for hp object integrity | |
csv_path = "path/to/metadata.csv" | |
wav_path = "path/to/wavs" | |
symbols = [ | |
'EOS', ' ', '!', ',', '-', '.', ';', '?', 'a', 'b', 'c', 'd', 'e', 'f', | |
'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', | |
't', 'u', 'v', 'w', 'x', 'y', 'z', 'à', 'â', 'è', 'é', 'ê', 'ü', | |
'’', '“', '”' | |
] | |
sr = 22050 | |
n_fft = 2048 | |
n_stft = int((n_fft//2) + 1) | |
hop_length = int(n_fft/8.0) | |
win_length = int(n_fft/2.0) | |
mel_freq = 128 | |
max_mel_time = 1024 | |
power = 2.0 | |
text_num_embeddings = 2*len(symbols) | |
embedding_size = 256 | |
encoder_embedding_size = 512 | |
dim_feedforward = 1024 | |
postnet_embedding_size = 1024 | |
encoder_kernel_size = 3 | |
postnet_kernel_size = 5 | |
ampl_multiplier = 10.0 | |
ampl_amin = 1e-10 | |
db_multiplier = 1.0 | |
ampl_ref = 1.0 | |
ampl_power = 1.0 | |
max_db = 100 | |
scale_db = 10 | |
hp = Hyperparams() | |
# Text to Sequence | |
symbol_to_id = {s: i for i, s in enumerate(hp.symbols)} | |
def text_to_seq(text): | |
text = text.lower() | |
seq = [] | |
for s in text: | |
_id = symbol_to_id.get(s, None) | |
if _id is not None: | |
seq.append(_id) | |
seq.append(symbol_to_id["EOS"]) | |
return torch.IntTensor(seq) | |
# Audio Processing | |
spec_transform = torchaudio.transforms.Spectrogram(n_fft=hp.n_fft, win_length=hp.win_length, hop_length=hp.hop_length, power=hp.power) | |
mel_scale_transform = torchaudio.transforms.MelScale(n_mels=hp.mel_freq, sample_rate=hp.sr, n_stft=hp.n_stft) | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
mel_inverse_transform = torchaudio.transforms.InverseMelScale(n_mels=hp.mel_freq, sample_rate=hp.sr, n_stft=hp.n_stft).to(DEVICE) | |
griffnlim_transform = torchaudio.transforms.GriffinLim(n_fft=hp.n_fft, win_length=hp.win_length, hop_length=hp.hop_length).to(DEVICE) | |
def pow_to_db_mel_spec(mel_spec): | |
mel_spec = torchaudio.functional.amplitude_to_DB(mel_spec, multiplier=hp.ampl_multiplier, amin=hp.ampl_amin, db_multiplier=hp.db_multiplier, top_db=hp.max_db) | |
mel_spec = mel_spec/hp.scale_db | |
return mel_spec | |
def db_to_power_mel_spec(mel_spec): | |
mel_spec = mel_spec*hp.scale_db | |
mel_spec = torchaudio.functional.DB_to_amplitude(mel_spec, ref=hp.ampl_ref, power=hp.ampl_power) | |
return mel_spec | |
def inverse_mel_spec_to_wav(mel_spec): | |
power_mel_spec = db_to_power_mel_spec(mel_spec.to(DEVICE)) | |
spectrogram = mel_inverse_transform(power_mel_spec) | |
pseudo_wav = griffnlim_transform(spectrogram) | |
return pseudo_wav | |
def mask_from_seq_lengths(sequence_lengths: torch.Tensor, max_length: int) -> torch.BoolTensor: | |
ones = sequence_lengths.new_ones(sequence_lengths.size(0), max_length) | |
range_tensor = ones.cumsum(dim=1) | |
return sequence_lengths.unsqueeze(1) >= range_tensor | |
# --- TransformerTTS Model Architecture (Copied from notebook) | |
class EncoderBlock(nn.Module): | |
def __init__(self): | |
super(EncoderBlock, self).__init__() | |
self.norm_1 = nn.LayerNorm(normalized_shape=hp.embedding_size) | |
self.attn = torch.nn.MultiheadAttention(embed_dim=hp.embedding_size, num_heads=4, dropout=0.1, batch_first=True) | |
self.dropout_1 = torch.nn.Dropout(0.1) | |
self.norm_2 = nn.LayerNorm(normalized_shape=hp.embedding_size) | |
self.linear_1 = nn.Linear(hp.embedding_size, hp.dim_feedforward) | |
self.dropout_2 = torch.nn.Dropout(0.1) | |
self.linear_2 = nn.Linear(hp.dim_feedforward, hp.embedding_size) | |
self.dropout_3 = torch.nn.Dropout(0.1) | |
def forward(self, x, attn_mask=None, key_padding_mask=None): | |
x_out = self.norm_1(x) | |
x_out, _ = self.attn(query=x_out, key=x_out, value=x_out, attn_mask=attn_mask, key_padding_mask=key_padding_mask) | |
x_out = self.dropout_1(x_out) | |
x = x + x_out | |
x_out = self.norm_2(x) | |
x_out = self.linear_1(x_out) | |
x_out = F.relu(x_out) | |
x_out = self.dropout_2(x_out) | |
x_out = self.linear_2(x_out) | |
x_out = self.dropout_3(x_out) | |
x = x + x_out | |
return x | |
class DecoderBlock(nn.Module): | |
def __init__(self): | |
super(DecoderBlock, self).__init__() | |
self.norm_1 = nn.LayerNorm(normalized_shape=hp.embedding_size) | |
self.self_attn = torch.nn.MultiheadAttention(embed_dim=hp.embedding_size, num_heads=4, dropout=0.1, batch_first=True) | |
self.dropout_1 = torch.nn.Dropout(0.1) | |
self.norm_2 = nn.LayerNorm(normalized_shape=hp.embedding_size) | |
self.attn = torch.nn.MultiheadAttention(embed_dim=hp.embedding_size, num_heads=4, dropout=0.1, batch_first=True) | |
self.dropout_2 = torch.nn.Dropout(0.1) | |
self.norm_3 = nn.LayerNorm(normalized_shape=hp.embedding_size) | |
self.linear_1 = nn.Linear(hp.embedding_size, hp.dim_feedforward) | |
self.dropout_3 = torch.nn.Dropout(0.1) | |
self.linear_2 = nn.Linear(hp.dim_feedforward, hp.embedding_size) | |
self.dropout_4 = torch.nn.Dropout(0.1) | |
def forward(self, x, memory, x_attn_mask=None, x_key_padding_mask=None, memory_attn_mask=None, memory_key_padding_mask=None): | |
x_out, _ = self.self_attn(query=x, key=x, value=x, attn_mask=x_attn_mask, key_padding_mask=x_key_padding_mask) | |
x_out = self.dropout_1(x_out) | |
x = self.norm_1(x + x_out) | |
x_out, _ = self.attn(query=x, key=memory, value=memory, attn_mask=memory_attn_mask, key_padding_mask=memory_key_padding_mask) | |
x_out = self.dropout_2(x_out) | |
x = self.norm_2(x + x_out) | |
x_out = self.linear_1(x) | |
x_out = F.relu(x_out) | |
x_out = self.dropout_3(x_out) | |
x_out = self.linear_2(x_out) | |
x_out = self.dropout_4(x_out) | |
x = self.norm_3(x + x_out) | |
return x | |
class EncoderPreNet(nn.Module): | |
def __init__(self): | |
super(EncoderPreNet, self).__init__() | |
self.embedding = nn.Embedding(num_embeddings=hp.text_num_embeddings, embedding_dim=hp.encoder_embedding_size) | |
self.linear_1 = nn.Linear(hp.encoder_embedding_size, hp.encoder_embedding_size) | |
self.linear_2 = nn.Linear(hp.encoder_embedding_size, hp.embedding_size) | |
self.conv_1 = nn.Conv1d(hp.encoder_embedding_size, hp.encoder_embedding_size, kernel_size=hp.encoder_kernel_size, stride=1, padding=int((hp.encoder_kernel_size - 1) / 2), dilation=1) | |
self.bn_1 = nn.BatchNorm1d(hp.encoder_embedding_size) | |
self.dropout_1 = torch.nn.Dropout(0.5) | |
self.conv_2 = nn.Conv1d(hp.encoder_embedding_size, hp.encoder_embedding_size, kernel_size=hp.encoder_kernel_size, stride=1, padding=int((hp.encoder_kernel_size - 1) / 2), dilation=1) | |
self.bn_2 = nn.BatchNorm1d(hp.encoder_embedding_size) | |
self.dropout_2 = torch.nn.Dropout(0.5) | |
self.conv_3 = nn.Conv1d(hp.encoder_embedding_size, hp.encoder_embedding_size, kernel_size=hp.encoder_kernel_size, stride=1, padding=int((hp.encoder_kernel_size - 1) / 2), dilation=1) | |
self.bn_3 = nn.BatchNorm1d(hp.encoder_embedding_size) | |
self.dropout_3 = torch.nn.Dropout(0.5) | |
def forward(self, text): | |
x = self.embedding(text) | |
x = self.linear_1(x) | |
x = x.transpose(2, 1) | |
x = self.conv_1(x) | |
x = self.bn_1(x) | |
x = F.relu(x) | |
x = self.dropout_1(x) | |
x = self.conv_2(x) | |
x = self.bn_2(x) | |
x = F.relu(x) | |
x = self.dropout_2(x) | |
x = self.conv_3(x) | |
x = self.bn_3(x) | |
x = F.relu(x) | |
x = self.dropout_3(x) | |
x = x.transpose(1, 2) | |
x = self.linear_2(x) | |
return x | |
class PostNet(nn.Module): | |
def __init__(self): | |
super(PostNet, self).__init__() | |
self.conv_1 = nn.Conv1d(hp.mel_freq, hp.postnet_embedding_size, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1) | |
self.bn_1 = nn.BatchNorm1d(hp.postnet_embedding_size) | |
self.dropout_1 = torch.nn.Dropout(0.5) | |
self.conv_2 = nn.Conv1d(hp.postnet_embedding_size, hp.postnet_embedding_size, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1) | |
self.bn_2 = nn.BatchNorm1d(hp.postnet_embedding_size) | |
self.dropout_2 = torch.nn.Dropout(0.5) | |
self.conv_3 = nn.Conv1d(hp.postnet_embedding_size, hp.postnet_embedding_size, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1) | |
self.bn_3 = nn.BatchNorm1d(hp.postnet_embedding_size) | |
self.dropout_3 = torch.nn.Dropout(0.5) | |
self.conv_4 = nn.Conv1d(hp.postnet_embedding_size, hp.postnet_embedding_size, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1) | |
self.bn_4 = nn.BatchNorm1d(hp.postnet_embedding_size) | |
self.dropout_4 = torch.nn.Dropout(0.5) | |
self.conv_5 = nn.Conv1d(hp.postnet_embedding_size, hp.postnet_embedding_size, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1) | |
self.bn_5 = nn.BatchNorm1d(hp.postnet_embedding_size) | |
self.dropout_5 = torch.nn.Dropout(0.5) | |
self.conv_6 = nn.Conv1d(hp.postnet_embedding_size, hp.mel_freq, kernel_size=hp.postnet_kernel_size, stride=1, padding=int((hp.postnet_kernel_size - 1) / 2), dilation=1) | |
self.bn_6 = nn.BatchNorm1d(hp.mel_freq) | |
self.dropout_6 = torch.nn.Dropout(0.5) | |
def forward(self, x): | |
x = x.transpose(2, 1) | |
x = self.conv_1(x) | |
x = self.bn_1(x); x = torch.tanh(x); x = self.dropout_1(x) | |
x = self.conv_2(x) | |
x = self.bn_2(x); x = torch.tanh(x); x = self.dropout_2(x) | |
x = self.conv_3(x) | |
x = self.bn_3(x); x = torch.tanh(x); x = self.dropout_3(x) | |
x = self.conv_4(x) | |
x = self.bn_4(x); x = torch.tanh(x); x = self.dropout_4(x) | |
x = self.conv_5(x) | |
x = self.bn_5(x); x = torch.tanh(x); x = self.dropout_5(x) | |
x = self.conv_6(x) | |
x = self.bn_6(x); x = self.dropout_6(x) | |
x = x.transpose(1, 2) | |
return x | |
class DecoderPreNet(nn.Module): | |
def __init__(self): | |
super(DecoderPreNet, self).__init__() | |
self.linear_1 = nn.Linear(hp.mel_freq, hp.embedding_size) | |
self.linear_2 = nn.Linear(hp.embedding_size, hp.embedding_size) | |
def forward(self, x): | |
x = self.linear_1(x) | |
x = F.relu(x) | |
x = F.dropout(x, p=0.5, training=True) | |
x = self.linear_2(x) | |
x = F.relu(x) | |
x = F.dropout(x, p=0.5, training=True) | |
return x | |
class TransformerTTS(nn.Module): | |
def __init__(self, device=DEVICE): | |
super(TransformerTTS, self).__init__() | |
self.encoder_prenet = EncoderPreNet() | |
self.decoder_prenet = DecoderPreNet() | |
self.postnet = PostNet() | |
self.pos_encoding = nn.Embedding(num_embeddings=hp.max_mel_time, embedding_dim=hp.embedding_size) | |
self.encoder_block_1 = EncoderBlock() | |
self.encoder_block_2 = EncoderBlock() | |
self.encoder_block_3 = EncoderBlock() | |
self.decoder_block_1 = DecoderBlock() | |
self.decoder_block_2 = DecoderBlock() | |
self.decoder_block_3 = DecoderBlock() | |
self.linear_1 = nn.Linear(hp.embedding_size, hp.mel_freq) | |
self.linear_2 = nn.Linear(hp.embedding_size, 1) | |
self.norm_memory = nn.LayerNorm(normalized_shape=hp.embedding_size) | |
def forward(self, text, text_len, mel, mel_len): | |
N = text.shape[0]; S = text.shape[1]; TIME = mel.shape[1] | |
self.src_key_padding_mask = torch.zeros((N, S), device=text.device).masked_fill(~mask_from_seq_lengths(text_len, max_length=S), float("-inf")) | |
self.src_mask = torch.zeros((S, S), device=text.device).masked_fill(torch.triu(torch.full((S, S), True, dtype=torch.bool), diagonal=1).to(text.device), float("-inf")) | |
self.tgt_key_padding_mask = torch.zeros((N, TIME), device=mel.device).masked_fill(~mask_from_seq_lengths(mel_len, max_length=TIME), float("-inf")) | |
self.tgt_mask = torch.zeros((TIME, TIME), device=mel.device).masked_fill(torch.triu(torch.full((TIME, TIME), True, device=mel.device, dtype=torch.bool), diagonal=1), float("-inf")) | |
self.memory_mask = torch.zeros((TIME, S), device=mel.device).masked_fill(torch.triu(torch.full((TIME, S), True, device=mel.device, dtype=torch.bool), diagonal=1), float("-inf")) | |
text_x = self.encoder_prenet(text) | |
pos_codes = self.pos_encoding(torch.arange(hp.max_mel_time).to(mel.device)) | |
S = text_x.shape[1]; text_x = text_x + pos_codes[:S] | |
text_x = self.encoder_block_1(text_x, attn_mask = self.src_mask, key_padding_mask = self.src_key_padding_mask) | |
text_x = self.encoder_block_2(text_x, attn_mask = self.src_mask, key_padding_mask = self.src_key_padding_mask) | |
text_x = self.encoder_block_3(text_x, attn_mask = self.src_mask, key_padding_mask = self.src_key_padding_mask) | |
text_x = self.norm_memory(text_x) | |
mel_x = self.decoder_prenet(mel); mel_x = mel_x + pos_codes[:TIME] | |
mel_x = self.decoder_block_1(x=mel_x, memory=text_x, x_attn_mask=self.tgt_mask, x_key_padding_mask=self.tgt_key_padding_mask, memory_attn_mask=self.memory_mask, memory_key_padding_mask=self.src_key_padding_mask) | |
mel_x = self.decoder_block_2(x=mel_x, memory=text_x, x_attn_mask=self.tgt_mask, x_key_padding_mask=self.tgt_key_padding_mask, memory_attn_mask=self.memory_mask, memory_key_padding_mask=self.src_key_padding_mask) | |
mel_x = self.decoder_block_3(x=mel_x, memory=text_x, x_attn_mask=self.tgt_mask, x_key_padding_mask=self.tgt_key_padding_mask, memory_attn_mask=self.memory_mask, memory_key_padding_mask=self.src_key_padding_mask) | |
mel_linear = self.linear_1(mel_x) | |
mel_postnet = self.postnet(mel_linear) | |
mel_postnet = mel_linear + mel_postnet | |
stop_token = self.linear_2(mel_x) | |
bool_mel_mask = self.tgt_key_padding_mask.ne(0).unsqueeze(-1).repeat(1, 1, hp.mel_freq) | |
mel_linear = mel_linear.masked_fill(bool_mel_mask, 0) | |
mel_postnet = mel_postnet.masked_fill(bool_mel_mask, 0) | |
stop_token = stop_token.masked_fill(bool_mel_mask[:, :, 0].unsqueeze(-1), 1e3).squeeze(2) | |
return mel_postnet, mel_linear, stop_token | |
def inference(self, text, max_length=800, stop_token_threshold=0.5, with_tqdm=True): | |
self.eval(); self.train(False) | |
text_lengths = torch.tensor(text.shape[1]).unsqueeze(0).to(DEVICE) | |
N = 1 | |
SOS = torch.zeros((N, 1, hp.mel_freq), device=DEVICE) | |
mel_padded = SOS | |
mel_lengths = torch.tensor(1).unsqueeze(0).to(DEVICE) | |
stop_token_outputs = torch.FloatTensor([]).to(text.device) | |
iters = range(max_length) | |
for _ in iters: | |
mel_postnet, mel_linear, stop_token = self(text, text_lengths, mel_padded, mel_lengths) | |
mel_padded = torch.cat([mel_padded, mel_postnet[:, -1:, :]], dim=1) | |
if torch.sigmoid(stop_token[:, -1]) > stop_token_threshold: | |
break | |
else: | |
stop_token_outputs = torch.cat([stop_token_outputs, stop_token[:, -1:]], dim=1) | |
mel_lengths = torch.tensor(mel_padded.shape[1]).unsqueeze(0).to(DEVICE) | |
return mel_postnet, stop_token_outputs | |
# Part 3: Model Loading | |
# IMPORTANT: These paths assume you have placed the downloaded models | |
# into a 'models' subfolder in your project directory. | |
# --------------------------------- | |
# --- Part 3: Model Loading (from Hugging Face Hub) | |
# --------------------------------- | |
# IMPORTANT: Replace "your-username" with your Hugging Face username | |
# and the model names with the ones you created on the Hub. | |
TTS_MODEL_HUB_ID = "MoHamdyy/transformer-tts-ljspeech" | |
ASR_HUB_ID = "MoHamdyy/whisper-stt-model" | |
MARIAN_HUB_ID = "MoHamdyy/marian-ar-en-translation" | |
# Helper function to download the TTS model file from the Hub | |
from huggingface_hub import hf_hub_download | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
print("Loading models from Hugging Face Hub to device:", DEVICE) | |
# Load TTS Model from Hub | |
try: | |
print("Loading TTS model...") | |
# Download the .pt file from its repo | |
tts_model_path = hf_hub_download(repo_id=TTS_MODEL_HUB_ID, filename="train_SimpleTransfromerTTS.pt") | |
state = torch.load(tts_model_path, map_location=DEVICE) | |
TTS_MODEL = TransformerTTS().to(DEVICE) | |
# Check for the correct key in the state dictionary | |
if "model" in state: | |
TTS_MODEL.load_state_dict(state["model"]) | |
elif "state_dict" in state: | |
TTS_MODEL.load_state_dict(state["state_dict"]) | |
else: | |
TTS_MODEL.load_state_dict(state) # Assume the whole file is the state_dict | |
TTS_MODEL.eval() | |
print("TTS model loaded successfully.") | |
except Exception as e: | |
print(f"Error loading TTS model: {e}") | |
TTS_MODEL = None | |
# Load STT (Whisper) Model from Hub | |
try: | |
print("Loading STT (Whisper) model...") | |
stt_processor = WhisperProcessor.from_pretrained(ASR_HUB_ID) | |
stt_model = WhisperForConditionalGeneration.from_pretrained(ASR_HUB_ID).to(DEVICE).eval() | |
print("STT model loaded successfully.") | |
except Exception as e: | |
print(f"Error loading STT model: {e}") | |
stt_processor = None | |
stt_model = None | |
# Load TTT (MarianMT) Model from Hub | |
try: | |
print("Loading TTT (MarianMT) model...") | |
mt_tokenizer = MarianTokenizer.from_pretrained(MARIAN_HUB_ID) | |
mt_model = MarianMTModel.from_pretrained(MARIAN_HUB_ID).to(DEVICE).eval() | |
print("TTT model loaded successfully.") | |
except Exception as e: | |
print(f"Error loading TTT model: {e}") | |
mt_tokenizer = None | |
mt_model = None | |
# Part 4: Full Pipeline Function | |
def full_speech_translation_pipeline(audio_input_path: str): | |
print(f"--- PIPELINE START: Processing {audio_input_path} ---") | |
if audio_input_path is None or not os.path.exists(audio_input_path): | |
msg = "Error: Audio file not provided or not found." | |
print(msg) | |
# Return empty/default values | |
return "Error: No file", "", (hp.sr, np.array([]).astype(np.float32)) | |
# STT Stage | |
arabic_transcript = "STT Error: Processing failed." | |
try: | |
print("STT: Loading and resampling audio...") | |
wav, sr = torchaudio.load(audio_input_path) | |
if wav.size(0) > 1: wav = wav.mean(dim=0, keepdim=True) | |
target_sr_stt = stt_processor.feature_extractor.sampling_rate | |
if sr != target_sr_stt: wav = torchaudio.transforms.Resample(sr, target_sr_stt)(wav) | |
audio_array_stt = wav.squeeze().cpu().numpy() | |
print("STT: Extracting features and transcribing...") | |
inputs = stt_processor(audio_array_stt, sampling_rate=target_sr_stt, return_tensors="pt").input_features.to(DEVICE) | |
forced_ids = stt_processor.get_decoder_prompt_ids(language="arabic", task="transcribe") | |
with torch.no_grad(): | |
generated_ids = stt_model.generate(inputs, forced_decoder_ids=forced_ids, max_length=448) | |
arabic_transcript = stt_processor.decode(generated_ids[0], skip_special_tokens=True).strip() | |
print(f"STT Output: {arabic_transcript}") | |
except Exception as e: | |
print(f"STT Error: {e}") | |
# TTT Stage | |
english_translation = "TTT Error: Processing failed." | |
if arabic_transcript and not arabic_transcript.startswith("STT Error"): | |
try: | |
print("TTT: Translating to English...") | |
batch = mt_tokenizer(arabic_transcript, return_tensors="pt", padding=True).to(DEVICE) | |
with torch.no_grad(): | |
translated_ids = mt_model.generate(**batch, max_length=512) | |
english_translation = mt_tokenizer.batch_decode(translated_ids, skip_special_tokens=True)[0].strip() | |
print(f"TTT Output: {english_translation}") | |
except Exception as e: | |
print(f"TTT Error: {e}") | |
else: | |
english_translation = "(Skipped TTT due to STT failure)" | |
print(english_translation) | |
# TTS Stage | |
synthesized_audio_np = np.array([]).astype(np.float32) | |
if english_translation and not english_translation.startswith("TTT Error"): | |
try: | |
print("TTS: Synthesizing English speech...") | |
sequence = text_to_seq(english_translation).unsqueeze(0).to(DEVICE) | |
generated_mel, _ = TTS_MODEL.inference(sequence, max_length=hp.max_mel_time-20, stop_token_threshold=0.5, with_tqdm=False) | |
print(f"TTS: Generated mel shape: {generated_mel.shape if generated_mel is not None else 'None'}") | |
if generated_mel is not None and generated_mel.numel() > 0: | |
mel_for_vocoder = generated_mel.detach().squeeze(0).transpose(0, 1) | |
audio_tensor = inverse_mel_spec_to_wav(mel_for_vocoder) | |
synthesized_audio_np = audio_tensor.cpu().numpy() | |
print(f"TTS: Synthesized audio shape: {synthesized_audio_np.shape}") | |
except Exception as e: | |
print(f"TTS Error: {e}") | |
print(f"--- PIPELINE END ---") | |
return arabic_transcript, english_translation, (hp.sr, synthesized_audio_np) | |
# Part 5: FastAPI Application | |
app = FastAPI() | |
# Allow Cross-Origin Resource Sharing (CORS) for your frontend | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], # Allows all origins | |
allow_credentials=True, | |
allow_methods=["*"], # Allows all methods | |
allow_headers=["*"], # Allows all headers | |
) | |
async def create_upload_file(file: UploadFile = File(...)): | |
# Save the uploaded file temporarily | |
temp_path = f"/tmp/{file.filename}" | |
with open(temp_path, "wb") as buffer: | |
shutil.copyfileobj(file.file, buffer) | |
# Run the full pipeline | |
arabic, english, (sr, audio_np) = full_speech_translation_pipeline(temp_path) | |
# Prepare the audio to be sent back as base64 | |
audio_base64 = "" | |
if audio_np.size > 0: | |
temp_wav_path = "/tmp/output.wav" | |
sf.write(temp_wav_path, audio_np, sr) | |
with open(temp_wav_path, "rb") as wav_file: | |
audio_bytes = wav_file.read() | |
audio_base64 = base64.b64encode(audio_bytes).decode('utf-8') | |
# Return all results in a single JSON response | |
return { | |
"arabic_transcript": arabic, | |
"english_translation": english, | |
"audio_data": { | |
"sample_rate": sr, | |
"base64": audio_base64 | |
} | |
} | |
app.mount("/", StaticFiles(directory="static", html=True), name="static") |