|
import atexit |
|
import functools |
|
from queue import Queue |
|
from threading import Event, Thread |
|
import time |
|
|
|
from paddleocr import PaddleOCR, draw_ocr |
|
from PIL import Image |
|
import gradio as gr |
|
|
|
|
|
LANG_CONFIG = { |
|
"ch": {"num_workers": 2}, |
|
"en": {"num_workers": 2}, |
|
"fr": {"num_workers": 1}, |
|
"german": {"num_workers": 1}, |
|
"korean": {"num_workers": 1}, |
|
"japan": {"num_workers": 1}, |
|
} |
|
CONCURRENCY_LIMIT = 8 |
|
|
|
|
|
class PaddleOCRModelManager(object): |
|
def __init__(self, |
|
num_workers, |
|
model_factory): |
|
super().__init__() |
|
self._model_factory = model_factory |
|
self._queue = Queue() |
|
self._workers = [] |
|
self._model_initialized_event = Event() |
|
for _ in range(num_workers): |
|
worker = Thread(target=self._worker, daemon=False) |
|
worker.start() |
|
self._model_initialized_event.wait() |
|
self._model_initialized_event.clear() |
|
self._workers.append(worker) |
|
|
|
def infer(self, *args, **kwargs): |
|
|
|
result_queue = Queue(maxsize=1) |
|
self._queue.put((args, kwargs, result_queue)) |
|
success, payload = result_queue.get() |
|
if success: |
|
return payload |
|
else: |
|
raise payload |
|
|
|
def close(self): |
|
for _ in self._workers: |
|
self._queue.put(None) |
|
for worker in self._workers: |
|
worker.join() |
|
|
|
def _worker(self): |
|
model = self._model_factory() |
|
self._model_initialized_event.set() |
|
while True: |
|
item = self._queue.get() |
|
if item is None: |
|
break |
|
args, kwargs, result_queue = item |
|
try: |
|
result = model.ocr(*args, **kwargs) |
|
result_queue.put((True, result)) |
|
except Exception as e: |
|
result_queue.put((False, e)) |
|
finally: |
|
self._queue.task_done() |
|
|
|
|
|
def create_model(lang): |
|
return PaddleOCR(lang=lang, use_angle_cls=True, use_gpu=False) |
|
|
|
|
|
model_managers = {} |
|
for lang, config in LANG_CONFIG.items(): |
|
model_manager = PaddleOCRModelManager(config["num_workers"], functools.partial(create_model, lang=lang)) |
|
model_managers[lang] = model_manager |
|
|
|
|
|
def close_model_managers(): |
|
for manager in model_managers.values(): |
|
manager.close() |
|
|
|
|
|
|
|
atexit.register(close_model_managers) |
|
|
|
|
|
def inference(img, lang): |
|
ocr = model_managers[lang] |
|
result = ocr.infer(img, cls=True)[0] |
|
|
|
if result is not None: |
|
for item in result: |
|
print(item) |
|
else: |
|
print("La variable 'result' es None, no hay elementos para procesar.") |
|
|
|
print("Resultado de la inferencia: ") |
|
print(result) |
|
|
|
if result is not None: |
|
|
|
|
|
img_path = img |
|
image = Image.open(img_path).convert("RGB") |
|
boxes = [line[0] for line in result] |
|
txts = [line[1][0] for line in result] |
|
scores = [line[1][1] for line in result] |
|
im_show = draw_ocr(image, boxes, txts, scores, |
|
font_path="./simfang.ttf") |
|
print("Impresión de todos los resultados: ") |
|
print("Boxes:") |
|
print(boxes) |
|
print("Texts:") |
|
print(txts) |
|
print("Scores:") |
|
print(scores) |
|
|
|
return result |
|
|
|
css = ".output_image, .input_image {height: 40rem !important; width: 100% !important;}" |
|
gr.Interface( |
|
inference, |
|
[ |
|
gr.Image(type='filepath', label='Input'), |
|
gr.Dropdown(choices=list(LANG_CONFIG.keys()), value='en', label='language') |
|
], |
|
|
|
gr.Dataframe(), |
|
|
|
|
|
|
|
cache_examples=False, |
|
css=css, |
|
concurrency_limit=CONCURRENCY_LIMIT, |
|
).launch(debug=False, show_error=True) |