Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torchvision.transforms as transforms | |
from PIL import Image | |
import gradio as gr | |
# ------------------- Model Definition ------------------- | |
class SimpleCNN(nn.Module): | |
def __init__(self, num_classes=1): | |
super(SimpleCNN, self).__init__() | |
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1) | |
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1) | |
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1) | |
self.pool = nn.MaxPool2d(2, 2) | |
self.fc1 = nn.Linear(128 * 28 * 28, 512) | |
self.fc2 = nn.Linear(512, num_classes) | |
def forward(self, x): | |
x = self.pool(F.relu(self.conv1(x))) | |
x = self.pool(F.relu(self.conv2(x))) | |
x = self.pool(F.relu(self.conv3(x))) | |
x = x.view(-1, 128 * 28 * 28) | |
x = F.relu(self.fc1(x)) | |
x = self.fc2(x) | |
return x | |
# ------------------- Load Model ------------------- | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = SimpleCNN() | |
model.load_state_dict(torch.load("age_prediction_model1.pth", map_location=device)) | |
model.to(device) | |
model.eval() | |
# ------------------- Transform ------------------- | |
transform = transforms.Compose([ | |
transforms.Resize((224, 224)), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], | |
[0.229, 0.224, 0.225]) | |
]) | |
# ------------------- Prediction Function ------------------- | |
def predict(image): | |
image = transform(image).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
output = model(image).squeeze().item() | |
return f"Predicted Age: {round(output, 2)} years" | |
# ------------------- Gradio Interface ------------------- | |
iface = gr.Interface(fn=predict, | |
inputs=gr.Image(type="pil"), | |
outputs="text", | |
title="Face Age Prediction", | |
description="Upload a face image and get a predicted age") | |
iface.launch() | |