MoinulwithAI's picture
Create app.py
727d2ea verified
raw
history blame
5.88 kB
import os
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
from tqdm import tqdm
import matplotlib.pyplot as plt
import timm
# Data augmentation and normalization
transform_train = transforms.Compose([
transforms.RandomResizedCrop(224, scale=(0.8, 1.0)),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.2),
transforms.RandomRotation(15),
transforms.RandomAffine(degrees=15, translate=(0.1, 0.1)),
transforms.GaussianBlur(kernel_size=3),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
transform_val = transforms.Compose([
transforms.Resize(224),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
# Dataset loading
train_dir = 'D:\\Dataset\\Potato Leaf Disease Dataset in Uncontrolled Environment'
full_ds = datasets.ImageFolder(train_dir, transform=transform_train)
train_size = int(0.8 * len(full_ds))
val_size = len(full_ds) - train_size
train_ds, val_ds = torch.utils.data.random_split(full_ds, [train_size, val_size])
val_ds.dataset.transform = transform_val # Apply validation transforms
train_loader = DataLoader(train_ds, batch_size=32, shuffle=True, num_workers=4)
val_loader = DataLoader(val_ds, batch_size=32, shuffle=False, num_workers=4)
# Device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Model definition with custom classification head (optional improvement)
model = timm.create_model('mobilenetv3_large_100', pretrained=True)
in_features = model.classifier.in_features
model.classifier = nn.Sequential(
nn.Linear(in_features, 512),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(512, len(full_ds.classes))
)
model.to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=1e-4)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', factor=0.5, patience=3)
# MixUp augmentation
def mixup_data(x, y, alpha=1.0):
if alpha > 0:
lam = np.random.beta(alpha, alpha)
else:
lam = 1
batch_size = x.size(0)
index = torch.randperm(batch_size).to(x.device)
mixed_x = lam * x + (1 - lam) * x[index, :]
y_a, y_b = y, y[index]
return mixed_x, y_a, y_b, lam
def mixup_criterion(criterion, pred, y_a, y_b, lam):
return lam * criterion(pred, y_a) + (1 - lam) * criterion(pred, y_b)
# Training function with MixUp
def train_epoch(model, train_loader, criterion, optimizer):
model.train()
running_loss, correct_preds, total_preds = 0.0, 0, 0
for inputs, labels in tqdm(train_loader, desc="Training Epoch", leave=False):
inputs, labels = inputs.to(device), labels.to(device)
inputs, targets_a, targets_b, lam = mixup_data(inputs, labels, alpha=1.0)
optimizer.zero_grad()
outputs = model(inputs)
loss = mixup_criterion(criterion, outputs, targets_a, targets_b, lam)
loss.backward()
optimizer.step()
_, preds = torch.max(outputs, 1)
correct_preds += (lam * preds.eq(targets_a).sum().item()
+ (1 - lam) * preds.eq(targets_b).sum().item())
total_preds += labels.size(0)
running_loss += loss.item()
return running_loss / len(train_loader), correct_preds / total_preds
# Validation function
def validate_epoch(model, val_loader, criterion):
model.eval()
running_loss, correct_preds, total_preds = 0.0, 0, 0
with torch.no_grad():
for inputs, labels in tqdm(val_loader, desc="Validating Epoch", leave=False):
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
loss = criterion(outputs, labels)
_, preds = torch.max(outputs, 1)
correct_preds += (preds == labels).sum().item()
total_preds += labels.size(0)
running_loss += loss.item()
return running_loss / len(val_loader), correct_preds / total_preds
# Plotting
def plot_metrics(train_loss, val_loss, train_acc, val_acc):
epochs = range(1, len(train_loss) + 1)
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.plot(epochs, train_loss, label='Training Loss')
plt.plot(epochs, val_loss, label='Validation Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(epochs, train_acc, label='Training Accuracy')
plt.plot(epochs, val_acc, label='Validation Accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
# Training loop
num_epochs = 20
train_losses, val_losses = [], []
train_accuracies, val_accuracies = [], []
for epoch in range(num_epochs):
print(f"\nEpoch {epoch+1}/{num_epochs}")
train_loss, train_acc = train_epoch(model, train_loader, criterion, optimizer)
val_loss, val_acc = validate_epoch(model, val_loader, criterion)
scheduler.step(val_acc)
print(f"Train Loss: {train_loss:.4f}, Accuracy: {train_acc:.4f}")
print(f"Val Loss: {val_loss:.4f}, Accuracy: {val_acc:.4f}")
train_losses.append(train_loss)
val_losses.append(val_loss)
train_accuracies.append(train_acc)
val_accuracies.append(val_acc)
plot_metrics(train_losses, val_losses, train_accuracies, val_accuracies)
best_val_acc = 0.0
save_path = 'D:\\Dataset\\Potato Leaf Disease Dataset in Uncontrolled Environment\\best_model.pth'
os.makedirs(os.path.dirname(save_path), exist_ok=True)
if val_acc > best_val_acc:
best_val_acc = val_acc
torch.save(model.state_dict(), save_path)
print(f"✅ Best model saved with val_acc: {val_acc:.4f}")