File size: 46,410 Bytes
7150117
 
86d5c5f
7150117
 
 
a0e970b
 
 
 
 
95230fb
 
 
 
b55bd43
 
 
3c96d15
 
b55bd43
 
3c96d15
b55bd43
 
01b4983
 
 
b55bd43
 
 
3c96d15
 
01b4983
3c96d15
01b4983
3c96d15
 
01b4983
3c96d15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b55bd43
01b4983
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b55bd43
01b4983
b55bd43
 
 
7150117
 
b55bd43
7150117
 
 
 
 
 
 
 
4990b34
ac2c54a
7a6c881
 
86d5c5f
8640a78
86d5c5f
 
 
 
 
 
8640a78
86d5c5f
86b2ecb
 
 
 
 
7a6c881
5b1db8f
 
 
86d5c5f
 
 
7a6c881
 
86d5c5f
 
 
 
7a6c881
7150117
 
 
 
 
 
e809d91
 
 
 
 
 
 
 
 
 
 
 
 
 
7150117
 
 
 
a0e970b
 
 
3c96d15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0e970b
 
 
 
 
 
d416dd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c6d326
 
 
 
 
d416dd8
 
6c6d326
 
 
 
 
 
 
 
 
 
 
 
d416dd8
 
 
 
 
 
 
 
 
a0e970b
 
 
 
 
 
 
 
 
 
 
 
 
 
3c96d15
d416dd8
a0e970b
 
 
3c96d15
 
 
 
 
d416dd8
3c96d15
 
 
d416dd8
6c6d326
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0e970b
 
 
 
 
3c96d15
 
 
 
 
95230fb
 
b55bd43
95230fb
b55bd43
 
6c6d326
 
 
 
 
 
 
 
 
 
 
95230fb
b55bd43
95230fb
 
 
b55bd43
d416dd8
b55bd43
 
 
d416dd8
b55bd43
d416dd8
 
 
 
 
 
 
 
 
 
 
 
b55bd43
 
d416dd8
b55bd43
95230fb
d416dd8
95230fb
 
d416dd8
 
 
 
6c6d326
 
 
 
 
 
 
 
 
 
 
 
d416dd8
 
 
 
 
 
 
 
7150117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4990b34
 
 
 
7150117
 
 
 
7c1376e
9fff9fd
 
7150117
4990b34
7150117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c1376e
 
7150117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c1376e
 
9fff9fd
7150117
 
 
 
 
7c1376e
 
 
 
 
7150117
 
 
7c1376e
7150117
 
7c1376e
e809d91
 
 
7c1376e
e809d91
 
 
 
 
7150117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac2c54a
 
 
 
 
 
 
 
e809d91
ac2c54a
 
 
 
 
 
e809d91
 
 
 
 
 
 
ac2c54a
7150117
 
 
 
 
 
 
8640a78
86d5c5f
7a6c881
 
ac2c54a
 
 
4990b34
 
 
7150117
 
 
 
 
 
 
 
 
 
 
a0e970b
 
 
 
 
7150117
042f856
a092fd7
7a6c881
7150117
 
042f856
a092fd7
 
 
 
042f856
 
7150117
 
042f856
7150117
 
 
 
e809d91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7150117
e809d91
a0e970b
 
e809d91
a0e970b
 
 
 
7150117
86d5c5f
 
86b2ecb
1d9cb67
86b2ecb
 
 
 
7a6c881
 
8640a78
3e2f09d
7150117
 
 
 
 
 
 
 
 
 
 
 
 
80ec937
 
 
86d5c5f
 
 
 
 
 
 
 
 
 
 
 
 
7a6c881
 
 
 
 
5b1db8f
86d5c5f
 
 
5b1db8f
 
 
 
86d5c5f
7a6c881
 
 
 
 
 
 
 
 
7150117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80ec937
 
 
7150117
80ec937
7150117
 
c625bd1
 
 
 
 
a0e970b
5b1db8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
#!/usr/bin/env python3
"""
Tranception Design App - Hugging Face Spaces Version (Zero GPU Fixed)
"""
import os
import sys

# Set up caching to avoid re-downloading models
os.environ['HF_HOME'] = '/tmp/huggingface'
os.environ['TRANSFORMERS_CACHE'] = '/tmp/huggingface/transformers'
os.environ['HF_DATASETS_CACHE'] = '/tmp/huggingface/datasets'
# Ensure proper Hugging Face endpoint
os.environ['HF_ENDPOINT'] = 'https://huggingface.co'
# Disable offline mode to allow downloads
os.environ['TRANSFORMERS_OFFLINE'] = '0'

# Patch for transformers 4.17.0 URL issue in HF Spaces
import urllib.parse
import json
import time

def patch_transformers_url():
    """Fix URL scheme issue in transformers 4.17.0 with comprehensive URL handling"""
    try:
        import transformers.file_utils
        import requests
        
        # Patch multiple functions for comprehensive URL fixing
        original_get_from_cache = transformers.file_utils.get_from_cache
        
        def patched_get_from_cache(url, *args, **kwargs):
            # Comprehensive URL fixing for various formats
            if isinstance(url, str):
                original_url = url
                # Handle different types of malformed URLs
                if url.startswith('/api/resolve-cache/') or url.startswith('/api/'):
                    # Fix relative API URLs - ensure proper base URL
                    url = 'https://huggingface.co' + url
                    print(f"Fixed relative API URL: {original_url} -> {url}")
                elif url.startswith('//'):
                    # Fix protocol-relative URLs
                    url = 'https:' + url
                elif not url.startswith(('http://', 'https://')):
                    # Handle other relative paths
                    if url.startswith('/'):
                        url = 'https://huggingface.co' + url
                    else:
                        url = 'https://huggingface.co/' + url
                
                # Additional validation and normalization
                try:
                    parsed = urllib.parse.urlparse(url)
                    if not parsed.netloc:
                        # If no netloc found, construct proper URL
                        url = 'https://huggingface.co' + ('/' + url if not url.startswith('/') else url)
                except Exception:
                    # Fallback for URL parsing errors
                    if not url.startswith('https://'):
                        url = 'https://huggingface.co' + ('/' + url if not url.startswith('/') else url)
            
            # Add retry mechanism for network requests
            max_retries = 3
            for attempt in range(max_retries):
                try:
                    return original_get_from_cache(url, *args, **kwargs)
                except Exception as e:
                    if attempt < max_retries - 1:
                        print(f"Download attempt {attempt + 1} failed for {url}: {e}. Retrying...")
                        time.sleep(2 ** attempt)  # Exponential backoff
                        continue
                    else:
                        print(f"All download attempts failed for {url}: {e}")
                        raise
        
        # Also patch cached_path function which might be causing the issue
        if hasattr(transformers.file_utils, 'cached_path'):
            original_cached_path = transformers.file_utils.cached_path
            
            def patched_cached_path(url_or_filename, *args, **kwargs):
                if isinstance(url_or_filename, str):
                    if url_or_filename.startswith('/api/resolve-cache/') or url_or_filename.startswith('/api/'):
                        url_or_filename = 'https://huggingface.co' + url_or_filename
                        print(f"Fixed cached_path URL: {url_or_filename}")
                return original_cached_path(url_or_filename, *args, **kwargs)
            
            transformers.file_utils.cached_path = patched_cached_path
        
        # Patch http_get function to handle malformed URLs at the lowest level
        if hasattr(transformers.file_utils, 'http_get'):
            original_http_get = transformers.file_utils.http_get
            
            def patched_http_get(url, *args, **kwargs):
                if isinstance(url, str):
                    if url.startswith('/api/resolve-cache/') or url.startswith('/api/'):
                        url = 'https://huggingface.co' + url
                        print(f"Fixed http_get URL: {url}")
                return original_http_get(url, *args, **kwargs)
            
            transformers.file_utils.http_get = patched_http_get
        
        # Patch requests.get at the lowest level to catch any remaining malformed URLs
        original_requests_get = requests.get
        
        def patched_requests_get(url, *args, **kwargs):
            if isinstance(url, str):
                if url.startswith('/api/resolve-cache/') or url.startswith('/api/'):
                    original_url = url
                    url = 'https://huggingface.co' + url
                    print(f"Fixed requests.get URL: {original_url} -> {url}")
                elif not url.startswith(('http://', 'https://', 'ftp://')):
                    if url.startswith('/'):
                        url = 'https://huggingface.co' + url
                        print(f"Fixed relative URL in requests.get: {url}")
            return original_requests_get(url, *args, **kwargs)
        
        requests.get = patched_requests_get
        
        transformers.file_utils.get_from_cache = patched_get_from_cache
        print("Applied comprehensive URL patch for transformers and requests")
    except Exception as e:
        print(f"Warning: Could not patch transformers URL handling: {e}")

import torch
import transformers
patch_transformers_url()
from transformers import PreTrainedTokenizerFast
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import gradio as gr
from huggingface_hub import hf_hub_download
import shutil
import uuid
import gc
import time
import datetime
import threading

# Simplified Zero GPU handling
try:
    import spaces
    SPACES_AVAILABLE = True
    print("Zero GPU support detected")
except ImportError:
    SPACES_AVAILABLE = False
    print("Running without Zero GPU support")
except Exception as e:
    # Catch any other initialization errors
    SPACES_AVAILABLE = False
    print(f"Zero GPU initialization warning: {e}")
    print("Running without Zero GPU support")

# Runtime mode tracking
RUNTIME_MODE = "GPU" if SPACES_AVAILABLE else "CPU"

# Keep-alive state
last_activity = datetime.datetime.now()
activity_lock = threading.Lock()

def update_activity():
    """Update last activity timestamp"""
    global last_activity
    with activity_lock:
        last_activity = datetime.datetime.now()

# Add current directory to path
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))

# Check if we need to download and extract the tranception module
if not os.path.exists("tranception"):
    print("Downloading Tranception repository...")
    try:
        # Clone the repository structure
        result = os.system("git clone https://github.com/OATML-Markslab/Tranception.git temp_tranception")
        if result != 0:
            raise Exception("Failed to clone Tranception repository")
        # Move the tranception module to current directory
        shutil.move("temp_tranception/tranception", "tranception")
        # Clean up
        shutil.rmtree("temp_tranception")
    except Exception as e:
        print(f"Error setting up Tranception: {e}")
        if os.path.exists("temp_tranception"):
            shutil.rmtree("temp_tranception")
        raise

import tranception
from tranception import config, model_pytorch

# Model loading configuration
MODEL_CACHE = {}

def validate_cache_file(file_path, min_size=1000):
    """Validate cache file integrity and content"""
    if not os.path.exists(file_path):
        return False, "File does not exist"
    
    # Check file size
    try:
        file_size = os.path.getsize(file_path)
        if file_size < min_size:
            return False, f"File too small ({file_size} bytes < {min_size})"
    except Exception as e:
        return False, f"Cannot get file size: {e}"
    
    # Check if it's supposed to be a JSON file (config files)
    if file_path.endswith('.json') or 'config' in file_path.lower():
        try:
            with open(file_path, 'r', encoding='utf-8') as f:
                content = f.read().strip()
                if not content:
                    return False, "Empty JSON file"
                json.loads(content)  # Validate JSON syntax
            return True, "Valid JSON file"
        except json.JSONDecodeError:
            return False, "Invalid JSON content"
        except Exception as e:
            return False, f"Cannot read JSON file: {e}"
    
    return True, "File appears valid"

def clean_corrupted_cache_files(cache_dir):
    """Clean corrupted or invalid cache files"""
    if not os.path.exists(cache_dir):
        return
    
    cleaned_count = 0
    for file in os.listdir(cache_dir):
        filepath = os.path.join(cache_dir, file)
        if os.path.isfile(filepath):
            valid, reason = validate_cache_file(filepath)
            if not valid:
                try:
                    os.remove(filepath)
                    print(f"Removed corrupted cache file: {file} ({reason})")
                    cleaned_count += 1
                except Exception as e:
                    print(f"Could not remove {file}: {e}")
    
    if cleaned_count > 0:
        print(f"Cleaned {cleaned_count} corrupted cache files")

def get_model_path(model_name):
    """Get model path - always use HF Hub for Zero GPU spaces"""
    # In HF Spaces, models are cached automatically by the transformers library
    # Always return the HF Hub path to leverage this caching
    return f"PascalNotin/{model_name}"

def load_model_direct(model_type):
    """Direct model loading with manual config handling"""
    import json
    import tempfile
    from transformers import AutoConfig
    
    print(f"Attempting direct load of {model_type} model...")
    
    # Create a proper config manually based on model type
    config_data = {
        "architectures": ["TranceptionLMHeadModel"],
        "model_type": "tranception",
        "_name_or_path": f"Tranception_{model_type}",
        "activation_function": "squared_relu",
        "attention_mode": "tranception",
        "attn_pdrop": 0.1,
        "embd_pdrop": 0.1,
        "initializer_range": 0.02,
        "layer_norm_epsilon": 1e-5,
        "n_embd": 768 if model_type == "Small" else (1024 if model_type == "Medium" else 1280),
        "n_head": 12 if model_type == "Small" else (16 if model_type == "Medium" else 20),
        "n_inner": None,
        "n_layer": 12 if model_type == "Small" else (24 if model_type == "Medium" else 30),
        "n_positions": 2048,
        "resid_pdrop": 0.1,
        "summary_activation": None,
        "summary_first_dropout": 0.1,
        "summary_proj_to_labels": True,
        "summary_type": "cls_index",
        "summary_use_proj": True,
        "vocab_size": 50257,
        "pad_token_id": 50256,
        "bos_token_id": 50256,
        "eos_token_id": 50256
    }
    
    # Save config to temp file
    with tempfile.NamedTemporaryFile(mode='w', suffix='.json', delete=False) as f:
        json.dump(config_data, f)
        config_path = f.name
    
    try:
        # Load config from temp file
        try:
            config = AutoConfig.from_pretrained(config_path)
        except Exception:
            # Try without trust_remote_code
            config = AutoConfig.from_pretrained(config_path)
        
        # Load model with manual config
        try:
            model = tranception.model_pytorch.TranceptionLMHeadModel.from_pretrained(
                f"PascalNotin/Tranception_{model_type}",
                config=config,
                ignore_mismatched_sizes=True
            )
        except TypeError:
            # Fallback without newer parameters
            model = tranception.model_pytorch.TranceptionLMHeadModel.from_pretrained(
                f"PascalNotin/Tranception_{model_type}",
                config=config
            )
        
        os.unlink(config_path)  # Clean up temp file
        return model
    except Exception as e:
        print(f"Direct load failed: {e}")
        if os.path.exists(config_path):
            os.unlink(config_path)
        raise

def load_model_cached(model_type):
    """Load model with caching to avoid re-downloading"""
    global MODEL_CACHE
    
    # Check if model is already in cache
    if model_type in MODEL_CACHE:
        print(f"Using cached {model_type} model")
        return MODEL_CACHE[model_type]
    
    print(f"Loading {model_type} model...")
    model_name = f"Tranception_{model_type}"
    model_path = get_model_path(model_name)
    
    try:
        # Enhanced cache cleaning with validation
        import shutil
        cache_dir = "/tmp/huggingface/transformers"
        os.makedirs(cache_dir, exist_ok=True)
        
        # Clean corrupted cache files using the new validation system
        print("Validating and cleaning cache files...")
        clean_corrupted_cache_files(cache_dir)
        
        # Enhanced environment setup for robust model loading
        os.environ["HF_ENDPOINT"] = "https://huggingface.co"
        os.environ["HUGGINGFACE_HUB_CACHE"] = cache_dir
        os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
        os.environ["HF_HUB_DISABLE_EXPERIMENTAL_WARNING"] = "1"
        
        # Try loading without trust_remote_code first (compatibility issue)
        try:
            model = tranception.model_pytorch.TranceptionLMHeadModel.from_pretrained(
                model_path,
                cache_dir=cache_dir,
                force_download=True,
                resume_download=False
            )
        except Exception as e1:
            print(f"Loading without trust_remote_code failed: {e1}")
            # Fallback: try with trust_remote_code for older transformers versions
            try:
                model = tranception.model_pytorch.TranceptionLMHeadModel.from_pretrained(
                    model_path,
                    cache_dir=cache_dir,
                    force_download=True,
                    trust_remote_code=True,
                    resume_download=False
                )
            except Exception as e2:
                print(f"Loading with trust_remote_code also failed: {e2}")
                raise e1  # Raise the original exception
        MODEL_CACHE[model_type] = model
        print(f"{model_type} model loaded and cached")
        return model
    except Exception as e:
        print(f"Error loading {model_type} model: {e}")
        print(f"Error type: {type(e).__name__}")
        if hasattr(e, '__cause__') and e.__cause__:
            print(f"Root cause: {e.__cause__}")
        print(f"Model path used: {model_path}")
        print(f"Cache directory: {cache_dir}")
        print(f"Attempting alternative loading method...")
        
        # Try alternative loading approach with full URL
        try:
            # Use full URL to bypass any path resolution issues
            full_url = f"https://huggingface.co/PascalNotin/Tranception_{model_type}"
            try:
                model = tranception.model_pytorch.TranceptionLMHeadModel.from_pretrained(
                    full_url,
                    cache_dir=cache_dir
                )
            except TypeError:
                # Try without trust_remote_code if it's not supported
                model = tranception.model_pytorch.TranceptionLMHeadModel.from_pretrained(
                    full_url,
                    cache_dir=cache_dir
                )
            MODEL_CACHE[model_type] = model
            print(f"{model_type} model loaded successfully with full URL")
            return model
        except Exception as e2:
            print(f"Alternative loading also failed: {e2}")
            
            # Final attempt: use AutoModel with manual config
            try:
                import json
                import requests
                from transformers import AutoConfig, AutoModel
                
                print(f"Attempting to load with AutoModel...")
                
                # Clear cache and try with AutoModel which handles config better
                cache_dir_auto = "/tmp/huggingface/auto"
                os.makedirs(cache_dir_auto, exist_ok=True)
                
                # Try direct loading with manual config
                model = load_model_direct(model_type)
                
                MODEL_CACHE[model_type] = model
                print(f"{model_type} model loaded successfully with AutoConfig")
                return model
                
            except Exception as e3:
                print(f"AutoModel loading also failed: {e3}")
            
            # Fallback to Medium if requested model fails
            if model_type == "Large":
                print("Falling back to Medium model...")
                return load_model_cached("Medium")
            elif model_type == "Medium":
                print("Medium model failed, trying Small model...")
                # Try Small model as last resort
                try:
                    try:
                        model = tranception.model_pytorch.TranceptionLMHeadModel.from_pretrained(
                            "PascalNotin/Tranception_Small",
                            force_download=True,
                            cache_dir="/tmp/huggingface/small"
                        )
                    except TypeError:
                        model = tranception.model_pytorch.TranceptionLMHeadModel.from_pretrained(
                            "PascalNotin/Tranception_Small",
                            force_download=True,
                            cache_dir="/tmp/huggingface/small"
                        )
                    MODEL_CACHE["Small"] = model
                    print("Small model loaded as fallback")
                    return model
                except Exception as e_small:
                    print(f"Small model also failed: {e_small}")
                    raise RuntimeError("Failed to load any Tranception model")
            else:
                raise RuntimeError(f"Failed to load {model_type} model")

AA_vocab = "ACDEFGHIKLMNPQRSTVWY"
tokenizer = PreTrainedTokenizerFast(tokenizer_file="./tranception/utils/tokenizers/Basic_tokenizer",
                                                unk_token="[UNK]",
                                                sep_token="[SEP]",
                                                pad_token="[PAD]",
                                                cls_token="[CLS]",
                                                mask_token="[MASK]"
                                            )

def create_all_single_mutants(sequence,AA_vocab=AA_vocab,mutation_range_start=None,mutation_range_end=None):
  all_single_mutants={}
  sequence_list=list(sequence)
  if mutation_range_start is None: mutation_range_start=1
  if mutation_range_end is None: mutation_range_end=len(sequence)
  for position,current_AA in enumerate(sequence[mutation_range_start-1:mutation_range_end]):
    for mutated_AA in AA_vocab:
      if current_AA!=mutated_AA:
        mutated_sequence = sequence_list.copy()
        mutated_sequence[mutation_range_start + position - 1] = mutated_AA
        all_single_mutants[current_AA+str(mutation_range_start+position)+mutated_AA]="".join(mutated_sequence)
  all_single_mutants = pd.DataFrame.from_dict(all_single_mutants,columns=['mutated_sequence'],orient='index')
  all_single_mutants.reset_index(inplace=True)
  all_single_mutants.columns = ['mutant','mutated_sequence']
  return all_single_mutants

def create_scoring_matrix_visual(scores,sequence,image_index=0,mutation_range_start=None,mutation_range_end=None,AA_vocab=AA_vocab,annotate=True,fontsize=20,unique_id=None):
  if unique_id is None:
    unique_id = str(uuid.uuid4())
    
  filtered_scores=scores.copy()
  filtered_scores=filtered_scores[filtered_scores.position.isin(range(mutation_range_start,mutation_range_end+1))]
  piv=filtered_scores.pivot(index='position',columns='target_AA',values='avg_score').round(4)
  
  # Calculate mutation range length
  mutation_range_len = mutation_range_end - mutation_range_start + 1
  
  # Save CSV file
  csv_path = 'fitness_scoring_substitution_matrix_{}_{}.csv'.format(unique_id, image_index)
  
  # Create a more detailed CSV with mutation info
  csv_data = []
  for position in range(mutation_range_start,mutation_range_end+1):
    for target_AA in list(AA_vocab):
      mutant = sequence[position-1]+str(position)+target_AA
      if mutant in set(filtered_scores.mutant):
        score_value = filtered_scores.loc[filtered_scores.mutant==mutant,'avg_score']
        if isinstance(score_value, pd.Series):
          score = float(score_value.iloc[0])
        else:
          score = float(score_value)
      else:
        score = 0.0
      
      csv_data.append({
        'position': position,
        'original_AA': sequence[position-1],
        'target_AA': target_AA,
        'mutation': mutant,
        'fitness_score': score
      })
  
  csv_df = pd.DataFrame(csv_data)
  csv_df.to_csv(csv_path, index=False)
  
  # Continue with visualization
  # Use large fixed width for clarity, height scales with positions (as in reference)
  fig, ax = plt.subplots(figsize=(50, mutation_range_len))
  scores_dict = {}
  valid_mutant_set=set(filtered_scores.mutant)  
  ax.tick_params(bottom=True, top=True, left=True, right=True)
  ax.tick_params(labelbottom=True, labeltop=True, labelleft=True, labelright=True)
  if annotate:
    for position in range(mutation_range_start,mutation_range_end+1):
      for target_AA in list(AA_vocab):
        mutant = sequence[position-1]+str(position)+target_AA
        if mutant in valid_mutant_set:
          score_value = filtered_scores.loc[filtered_scores.mutant==mutant,'avg_score']
          if isinstance(score_value, pd.Series):
            scores_dict[mutant] = float(score_value.iloc[0])
          else:
            scores_dict[mutant] = float(score_value)
        else:
          scores_dict[mutant]=0.0
    # Format labels as in reference - always show mutation and score with 4 decimal places
    labels = (np.asarray(["{} \n {:.4f}".format(symb,value) for symb, value in scores_dict.items() ])).reshape(mutation_range_len,len(AA_vocab))
    
    heat = sns.heatmap(piv,annot=labels,fmt="",cmap='RdYlGn',linewidths=0.30,ax=ax,vmin=np.percentile(scores.avg_score,2),vmax=np.percentile(scores.avg_score,98),\
                cbar_kws={'label': 'Log likelihood ratio (mutant / starting sequence)'},annot_kws={"size": fontsize})
  else:
    heat = sns.heatmap(piv,cmap='RdYlGn',linewidths=0.30,ax=ax,vmin=np.percentile(scores.avg_score,2),vmax=np.percentile(scores.avg_score,98),\
                cbar_kws={'label': 'Log likelihood ratio (mutant / starting sequence)'},annot_kws={"size": fontsize})
  # Use label sizes from reference
  heat.figure.axes[-1].yaxis.label.set_size(fontsize=int(fontsize*1.5))
  heat.set_title("Higher predicted scores (green) imply higher protein fitness",fontsize=fontsize*2, pad=40)
  heat.set_ylabel("Sequence position", fontsize = fontsize*2)
  heat.set_xlabel("Amino Acid mutation", fontsize = fontsize*2)
  
  # Set y-axis labels (positions)
  yticklabels = [str(pos)+' ('+sequence[pos-1]+')' for pos in range(mutation_range_start,mutation_range_end+1)]
  heat.set_yticklabels(yticklabels, fontsize=fontsize, rotation=0)
  
  # Set x-axis labels (amino acids) - ensuring correct number
  heat.set_xticklabels(list(AA_vocab), fontsize=fontsize)
  try:
    plt.tight_layout()
    image_path = 'fitness_scoring_substitution_matrix_{}_{}.png'.format(unique_id, image_index)
    plt.savefig(image_path, dpi=100)
    return image_path, csv_path
  finally:
    plt.close('all')  # Ensure all figures are closed
    plt.clf()  # Clear the current figure
    plt.cla()  # Clear the current axes

def suggest_mutations(scores):
  intro_message = "The following mutations may be sensible options to improve fitness: \n\n"
  #Best mutants
  top_mutants=list(scores.sort_values(by=['avg_score'],ascending=False).head(5).mutant)
  top_mutants_fitness=list(scores.sort_values(by=['avg_score'],ascending=False).head(5).avg_score)
  top_mutants_recos = [top_mutant+" ("+str(round(top_mutant_fitness,4))+")" for (top_mutant,top_mutant_fitness) in zip(top_mutants,top_mutants_fitness)]
  mutant_recos = "The single mutants with highest predicted fitness are (positive scores indicate fitness increase Vs starting sequence, negative scores indicate fitness decrease):\n {} \n\n".format(", ".join(top_mutants_recos))
  #Best positions
  positive_scores = scores[scores.avg_score > 0]
  if len(positive_scores) > 0:
    # Only select numeric columns for groupby mean
    positive_scores_position_avg = positive_scores.groupby(['position'])['avg_score'].mean().reset_index()
    top_positions=list(positive_scores_position_avg.sort_values(by=['avg_score'],ascending=False).head(5)['position'].astype(str))
    position_recos = "The positions with the highest average fitness increase are (only positions with at least one fitness increase are considered):\n {}".format(", ".join(top_positions))
  else:
    position_recos = "No positions with positive fitness effects found."
  return intro_message+mutant_recos+position_recos

def check_valid_mutant(sequence,mutant,AA_vocab=AA_vocab):
  valid = True
  try:
    from_AA, position, to_AA = mutant[0], int(mutant[1:-1]), mutant[-1]
  except:
    valid = False
  if valid and position > 0 and position <= len(sequence):
    if sequence[position-1]!=from_AA: valid=False
  else:
    valid = False
  if to_AA not in AA_vocab: valid=False
  return valid

def cleanup_old_files(max_age_minutes=30):
    """Clean up old inference files"""
    import glob
    current_time = time.time()
    patterns = ["fitness_scoring_substitution_matrix_*.png", 
                "fitness_scoring_substitution_matrix_*.csv",
                "all_mutations_fitness_scores_*.csv"]
    
    cleaned_count = 0
    for pattern in patterns:
        for file_path in glob.glob(pattern):
            try:
                file_age = current_time - os.path.getmtime(file_path)
                if file_age > max_age_minutes * 60:
                    os.remove(file_path)
                    cleaned_count += 1
            except Exception as e:
                # Log error but continue cleaning other files
                print(f"Warning: Could not remove {file_path}: {e}")
    
    if cleaned_count > 0:
        print(f"Cleaned up {cleaned_count} old files")

def get_mutated_protein(sequence,mutant):
  if not check_valid_mutant(sequence,mutant):
    return "The mutant is not valid"
  mutated_sequence = list(sequence)
  mutated_sequence[int(mutant[1:-1])-1]=mutant[-1]
  return ''.join(mutated_sequence)

def score_and_create_matrix_all_singles_impl(sequence,mutation_range_start=None,mutation_range_end=None,model_type="Large",scoring_mirror=False,batch_size_inference=20,max_number_positions_per_heatmap=50,num_workers=0,AA_vocab=AA_vocab):
  # Update activity
  update_activity()
  
  # Clean up old files periodically
  cleanup_old_files()
  
  # Generate unique ID for this request
  unique_id = str(uuid.uuid4())
  
  if mutation_range_start is None: mutation_range_start=1
  if mutation_range_end is None: mutation_range_end=len(sequence)
  
  # Clean sequence
  sequence = sequence.strip().upper()
  
  # Validate
  assert len(sequence) > 0, "no sequence entered"
  assert mutation_range_start <= mutation_range_end, "mutation range is invalid"
  assert mutation_range_end <= len(sequence), f"End position ({mutation_range_end}) exceeds sequence length ({len(sequence)})"
  
  # Load model with caching
  model = load_model_cached(model_type)
  
  # Move model to appropriate device INSIDE the GPU decorated function
  # This is crucial for Zero GPU - the model must be moved to GPU inside the decorated function
  
  # Device selection - Zero GPU will provide CUDA when decorated with @spaces.GPU
  print(f"GPU Available: {torch.cuda.is_available()}")
  
  if torch.cuda.is_available():
    device = torch.device("cuda")
    model = model.to(device)
    gpu_name = torch.cuda.get_device_name(0)
    gpu_memory = torch.cuda.get_device_properties(0).total_memory / 1024**3
    print(f"Inference will take place on {gpu_name}")
    print(f"GPU Memory: {gpu_memory:.2f} GB")
    # Increase batch size for GPU inference
    batch_size_inference = min(batch_size_inference, 50)
  else:
    device = torch.device("cpu")
    model = model.to(device)
    print("Inference will take place on CPU")
    # Reduce batch size for CPU inference
    batch_size_inference = min(batch_size_inference, 10)
    
  try:
    model.eval()
    model.config.tokenizer = tokenizer
    
    all_single_mutants = create_all_single_mutants(sequence,AA_vocab,mutation_range_start,mutation_range_end)
    
    with torch.no_grad():
      scores = model.score_mutants(DMS_data=all_single_mutants, 
                                        target_seq=sequence, 
                                        scoring_mirror=scoring_mirror, 
                                        batch_size_inference=batch_size_inference,  
                                        num_workers=num_workers, 
                                        indel_mode=False
                                        )
    
    scores = pd.merge(scores,all_single_mutants,on="mutated_sequence",how="left")
    scores["position"]=scores["mutant"].map(lambda x: int(x[1:-1]))
    scores["target_AA"] = scores["mutant"].map(lambda x: x[-1])
    
    score_heatmaps = []
    csv_files = []
    mutation_range = mutation_range_end - mutation_range_start + 1
    number_heatmaps = int((mutation_range - 1) / max_number_positions_per_heatmap) + 1
    image_index = 0
    window_start = mutation_range_start
    window_end = min(mutation_range_end,mutation_range_start+max_number_positions_per_heatmap-1)
    
    for image_index in range(number_heatmaps):
      image_path, csv_path = create_scoring_matrix_visual(scores,sequence,image_index,window_start,window_end,AA_vocab,unique_id=unique_id)
      score_heatmaps.append(image_path)
      csv_files.append(csv_path)
      window_start += max_number_positions_per_heatmap
      window_end = min(mutation_range_end,window_start+max_number_positions_per_heatmap-1)
    
    # Also save a comprehensive CSV with all mutations
    comprehensive_csv_path = 'all_mutations_fitness_scores_{}.csv'.format(unique_id)
    scores_export = scores[['mutant', 'position', 'target_AA', 'avg_score', 'mutated_sequence']].copy()
    scores_export['original_AA'] = scores_export['mutant'].str[0]
    scores_export = scores_export.rename(columns={'avg_score': 'fitness_score'})
    scores_export = scores_export[['position', 'original_AA', 'target_AA', 'mutant', 'fitness_score', 'mutated_sequence']]
    scores_export.to_csv(comprehensive_csv_path, index=False)
    csv_files.append(comprehensive_csv_path)
    
    return score_heatmaps, suggest_mutations(scores), csv_files
    
  finally:
    # Clean up GPU memory but keep model in cache
    # Move model back to CPU to free GPU memory
    if 'model' in locals():
      model.cpu()
    if torch.cuda.is_available():
      torch.cuda.empty_cache()
    gc.collect()

# Apply Zero GPU decorator if available
if SPACES_AVAILABLE:
    try:
        score_and_create_matrix_all_singles = spaces.GPU(duration=420)(score_and_create_matrix_all_singles_impl)
    except Exception as e:
        print(f"Warning: Could not apply Zero GPU decorator: {e}")
        print("Falling back to CPU mode")
        score_and_create_matrix_all_singles = score_and_create_matrix_all_singles_impl
else:
    score_and_create_matrix_all_singles = score_and_create_matrix_all_singles_impl

def extract_sequence(protein_id, taxon, sequence):
  return sequence

def clear_inputs(protein_sequence_input,mutation_range_start,mutation_range_end):
  protein_sequence_input = ""
  mutation_range_start = None
  mutation_range_end = None
  return protein_sequence_input,mutation_range_start,mutation_range_end

# Create Gradio app
tranception_design = gr.Blocks()

with tranception_design:
    gr.Markdown("# In silico directed evolution for protein redesign with Tranception")
    gr.Markdown("## 🧬 BASIS-China iGEM Team 2025 - Protein Engineering Platform")
    gr.Markdown("### Welcome to BASIS-China's implementation of Tranception on Hugging Face Spaces!")
    gr.Markdown("We are the BASIS-China iGEM team, and we're excited to present our deployment of the Tranception model for protein fitness prediction. This tool enables in silico directed evolution to iteratively improve protein fitness through single amino acid substitutions. At each step, Tranception computes log likelihood ratios for all possible mutations compared to the starting sequence, generating fitness heatmaps and recommendations to guide protein engineering.")
    gr.Markdown("**Technical Details**: This deployment leverages Hugging Face's Zero GPU infrastructure, which dynamically allocates H200 GPU resources when available. This allows for efficient inference while managing computational resources effectively.")
    
    # Hidden keep-alive component
    with gr.Row(visible=False):
        keep_alive_component = gr.Number(value=0, visible=False)
        
        def keep_alive_update():
            update_activity()
            return time.time()
        
        # Update every 2 minutes to keep websocket alive
        keep_alive_timer = gr.Timer(value=120)
        keep_alive_timer.tick(keep_alive_update, outputs=[keep_alive_component])
    
    # Status indicator
    with gr.Row():
        with gr.Column(scale=1):
            def get_gpu_status():
                global RUNTIME_MODE
                with activity_lock:
                    time_since = (datetime.datetime.now() - last_activity).total_seconds()
                
                if RUNTIME_MODE == "GPU":
                    status = "🔥 Zero GPU"
                else:
                    status = "💻 CPU Mode (GPU initialization failed)"
                return f"{status} | Last activity: {int(time_since)}s ago"
            
            gpu_status = gr.Textbox(
                label="Compute Status", 
                value=get_gpu_status, 
                every=5,  # Update every 5 seconds
                interactive=False,
                elem_id="gpu_status"
            )
    
    with gr.Tabs():
        with gr.TabItem("Input"):
            with gr.Row():
                protein_sequence_input = gr.Textbox(lines=1, 
                                                label="Protein sequence",
                                                placeholder = "Input the sequence of amino acids representing the starting protein of interest or select one from the list of examples below. You may enter the full sequence or just a subdomain (providing full context typically leads to better results, but is slower at inference)"
                                                )
            
            with gr.Row():
                mutation_range_start = gr.Number(label="Start of mutation window (first position indexed at 1)", value=1, precision=0)
                mutation_range_end = gr.Number(label="End of mutation window (leave empty for full lenth)", value=10, precision=0)

        with gr.TabItem("Parameters"):
            with gr.Row():
                model_size_selection = gr.Radio(label="Tranception model size (larger models are more accurate but are slower at inference)", 
                                                choices=["Small","Medium","Large"], 
                                                value="Small")
            with gr.Row():
                scoring_mirror = gr.Checkbox(label="Score protein from both directions (leads to more robust fitness predictions, but doubles inference time)")
            with gr.Row():
                batch_size_inference = gr.Number(label="Model batch size at inference time (reduce for CPU)",value = 10, precision=0)
            with gr.Row():
                gr.Markdown("Note: the current version does not leverage retrieval of homologs at inference time to increase fitness prediction performance.")
                
    with gr.Row():
        clear_button = gr.Button(value="Clear",variant="secondary")
        run_button = gr.Button(value="Predict fitness",variant="primary")
        
    protein_ID = gr.Textbox(label="Uniprot ID", visible=False)
    taxon = gr.Textbox(label="Taxon", visible=False)
    
    examples = gr.Examples(
        inputs=[protein_ID, taxon, protein_sequence_input],
        outputs=[protein_sequence_input],
        fn=extract_sequence,
        examples=[
            ['ADRB2_HUMAN'  ,'Human',           'MGQPGNGSAFLLAPNGSHAPDHDVTQERDEVWVVGMGIVMSLIVLAIVFGNVLVITAIAKFERLQTVTNYFITSLACADLVMGLAVVPFGAAHILMKMWTFGNFWCEFWTSIDVLCVTASIETLCVIAVDRYFAITSPFKYQSLLTKNKARVIILMVWIVSGLTSFLPIQMHWYRATHQEAINCYANETCCDFFTNQAYAIASSIVSFYVPLVIMVFVYSRVFQEAKRQLQKIDKSEGRFHVQNLSQVEQDGRTGHGLRRSSKFCLKEHKALKTLGIIMGTFTLCWLPFFIVNIVHVIQDNLIRKEVYILLNWIGYVNSGFNPLIYCRSPDFRIAFQELLCLRRSSLKAYGNGYSSNGNTGEQSGYHVEQEKENKLLCEDLPGTEDFVGHQGTVPSDNIDSQGRNCSTNDSLL'],
            ['IF1_ECOLI'    ,'Prokaryote',      'MAKEDNIEMQGTVLETLPNTMFRVELENGHVVTAHISGKMRKNYIRILTGDKVTVELTPYDLSKGRIVFRSR'],
            ['P53_HUMAN'    ,'Human',           'MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDIEQWFTEDPGPDEAPRMPEAAPRVAPAPAAPTPAAPAPAPSWPLSSSVPSQKTYQGSYGFRLGFLHSGTAKSVTCTYSPALNKMFCQLAKTCPVQLWVDSTPPPGTRVRAMAIYKQSQHMTEVVRRCPHHERCSDSDGLAPPQHLIRVEGNLRVEYLDDRNTFRHSVVVPYEPPEVGSDCTTIHYNYMCNSSCMGGMNRRPILTIITLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKKGEPHHELPPGSTKRALPNNTSSSPQPKKKPLDGEYFTLQIRGRERFEMFRELNEALELKDAQAGKEPGGSRAHSSHLKSKKGQSTSRHKKLMFKTEGPDSD'],
            ['BLAT_ECOLX'	  ,'Prokaryote',      'MSIQHFRVALIPFFAAFCLPVFAHPETLVKVKDAEDQLGARVGYIELDLNSGKILESFRPEERFPMMSTFKVLLCGAVLSRVDAGQEQLGRRIHYSQNDLVEYSPVTEKHLTDGMTVRELCSAAITMSDNTAANLLLTTIGGPKELTAFLHNMGDHVTRLDRWEPELNEAIPNDERDTTMPAAMATTLRKLLTGELLTLASRQQLIDWMEADKVAGPLLRSALPAGWFIADKSGAGERGSRGIIAALGPDGKPSRIVVIYTTGSQATMDERNRQIAEIGASLIKHW'],
            ['BRCA1_HUMAN'	,'Human',           'MDLSALRVEEVQNVINAMQKILECPICLELIKEPVSTKCDHIFCKFCMLKLLNQKKGPSQCPLCKNDITKRSLQESTRFSQLVEELLKIICAFQLDTGLEYANSYNFAKKENNSPEHLKDEVSIIQSMGYRNRAKRLLQSEPENPSLQETSLSVQLSNLGTVRTLRTKQRIQPQKTSVYIELGSDSSEDTVNKATYCSVGDQELLQITPQGTRDEISLDSAKKAACEFSETDVTNTEHHQPSNNDLNTTEKRAAERHPEKYQGSSVSNLHVEPCGTNTHASSLQHENSSLLLTKDRMNVEKAEFCNKSKQPGLARSQHNRWAGSKETCNDRRTPSTEKKVDLNADPLCERKEWNKQKLPCSENPRDTEDVPWITLNSSIQKVNEWFSRSDELLGSDDSHDGESESNAKVADVLDVLNEVDEYSGSSEKIDLLASDPHEALICKSERVHSKSVESNIEDKIFGKTYRKKASLPNLSHVTENLIIGAFVTEPQIIQERPLTNKLKRKRRPTSGLHPEDFIKKADLAVQKTPEMINQGTNQTEQNGQVMNITNSGHENKTKGDSIQNEKNPNPIESLEKESAFKTKAEPISSSISNMELELNIHNSKAPKKNRLRRKSSTRHIHALELVVSRNLSPPNCTELQIDSCSSSEEIKKKKYNQMPVRHSRNLQLMEGKEPATGAKKSNKPNEQTSKRHDSDTFPELKLTNAPGSFTKCSNTSELKEFVNPSLPREEKEEKLETVKVSNNAEDPKDLMLSGERVLQTERSVESSSISLVPGTDYGTQESISLLEVSTLGKAKTEPNKCVSQCAAFENPKGLIHGCSKDNRNDTEGFKYPLGHEVNHSRETSIEMEESELDAQYLQNTFKVSKRQSFAPFSNPGNAEEECATFSAHSGSLKKQSPKVTFECEQKEENQGKNESNIKPVQTVNITAGFPVVGQKDKPVDNAKCSIKGGSRFCLSSQFRGNETGLITPNKHGLLQNPYRIPPLFPIKSFVKTKCKKNLLEENFEEHSMSPEREMGNENIPSTVSTISRNNIRENVFKEASSSNINEVGSSTNEVGSSINEIGSSDENIQAELGRNRGPKLNAMLRLGVLQPEVYKQSLPGSNCKHPEIKKQEYEEVVQTVNTDFSPYLISDNLEQPMGSSHASQVCSETPDDLLDDGEIKEDTSFAENDIKESSAVFSKSVQKGELSRSPSPFTHTHLAQGYRRGAKKLESSEENLSSEDEELPCFQHLLFGKVNNIPSQSTRHSTVATECLSKNTEENLLSLKNSLNDCSNQVILAKASQEHHLSEETKCSASLFSSQCSELEDLTANTNTQDPFLIGSSKQMRHQSESQGVGLSDKELVSDDEERGTGLEENNQEEQSMDSNLGEAASGCESETSVSEDCSGLSSQSDILTTQQRDTMQHNLIKLQQEMAELEAVLEQHGSQPSNSYPSIISDSSALEDLRNPEQSTSEKAVLTSQKSSEYPISQNPEGLSADKFEVSADSSTSKNKEPGVERSSPSKCPSLDDRWYMHSCSGSLQNRNYPSQEELIKVVDVEEQQLEESGPHDLTETSYLPRQDLEGTPYLESGISLFSDDPESDPSEDRAPESARVGNIPSSTSALKVPQLKVAESAQSPAAAHTTDTAGYNAMEESVSREKPELTASTERVNKRMSMVVSGLTPEEFMLVYKFARKHHITLTNLITEETTHVVMKTDAEFVCERTLKYFLGIAGGKWVVSYFWVTQSIKERKMLNEHDFEVRGDVVNGRNHQGPKRARESQDRKIFRGLEICCYGPFTNMPTDQLEWMVQLCGASVVKELSSFTLGTGVHPIVVVQPDAWTEDNGFHAIGQMCEAPVVTREWVLDSVALYQCQELDTYLIPQIPHSHY'],
            ['CALM1_HUMAN'	,'Human',           'MADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQDMINEVDADGNGTIDFPEFLTMMARKMKDTDSEEEIREAFRVFDKDGNGYISAAELRHVMTNLGEKLTDEEVDEMIREADIDGDGQVNYEEFVQMMTAK'],
            ['CCDB_ECOLI'	  ,'Prokaryote',	    'MQFKVYTYKRESRYRLFVDVQSDIIDTPGRRMVIPLASARLLSDKVSRELYPVVHIGDESWRMMTTDMASVPVSVIGEEVADLSHRENDIKNAINLMFWGI'],
            ['GFP_AEQVI'	  ,'Other eukaryote', 'MSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITHGMDELYK'],
            ['GRB2_HUMAN'	  ,'Human',           'MEAIAKYDFKATADDELSFKRGDILKVLNEECDQNWYKAELNGKDGFIPKNYIEMKPHPWFFGKIPRAKAEEMLSKQRHDGAFLIRESESAPGDFSLSVKFGNDVQHFKVLRDGAGKYFLWVVKFNSLNELVDYHRSTSVSRNQQIFLRDIEQVPQQPTYVQALFDFDPQEDGELGFRRGDFIHVMDNSDPNWWKGACHGQTGMFPRNYVTPVNRNV'],
        ],
    )
    
    gr.Markdown("<br>")
    gr.Markdown("# Fitness predictions for all single amino acid substitutions in mutation range")
    gr.Markdown("Inference may take a few seconds for short proteins & mutation ranges to several minutes for longer ones")
    output_image = gr.Gallery(label="Fitness predictions for all single amino acid substitutions in mutation range") #Using Gallery to break down large scoring matrices into smaller images
    
    output_recommendations = gr.Textbox(label="Mutation recommendations")
    
    with gr.Row():
        gr.Markdown("## Download CSV Files")
    output_csv_files = gr.File(label="Download CSV files with fitness scores", file_count="multiple", interactive=False)
    
    clear_button.click(
        inputs = [protein_sequence_input,mutation_range_start,mutation_range_end],
        outputs = [protein_sequence_input,mutation_range_start,mutation_range_end],
        fn=clear_inputs
    )
    run_button.click(
        fn=score_and_create_matrix_all_singles,
        inputs=[protein_sequence_input,mutation_range_start,mutation_range_end,model_size_selection,scoring_mirror,batch_size_inference],
        outputs=[output_image,output_recommendations,output_csv_files],
    )
    
    gr.Markdown("# Mutate the starting protein sequence")
    with gr.Row():
        mutation_triplet = gr.Textbox(lines=1,label="Selected mutation", placeholder = "Input the mutation triplet for the selected mutation (eg., M1A)")
    mutate_button = gr.Button(value="Apply mutation to starting protein", variant="primary")
    mutated_protein_sequence = gr.Textbox(lines=1,label="Mutated protein sequence")
    mutate_button.click(
        fn = get_mutated_protein,
        inputs = [protein_sequence_input,mutation_triplet],
        outputs = mutated_protein_sequence
    )
    
    gr.Markdown("<p>You may now use the output mutated sequence above as the starting sequence for another round of in silico directed evolution.</p>")
    gr.Markdown("### About BASIS-China iGEM Team")
    gr.Markdown("We are a high school synthetic biology team participating in the International Genetically Engineered Machine (iGEM) competition. Our 2025 project focuses on protein engineering and computational biology applications. This Tranception deployment is part of our broader effort to make advanced protein design tools accessible to the synthetic biology community.")
    gr.Markdown("### About Tranception")
    gr.Markdown("<p><b>Tranception: Protein Fitness Prediction with Autoregressive Transformers and Inference-time Retrieval</b><br>Pascal Notin, Mafalda Dias, Jonathan Frazer, Javier Marchena-Hurtado, Aidan N. Gomez, Debora S. Marks<sup>*</sup>, Yarin Gal<sup>*</sup><br><sup>* equal senior authorship</sup></p>")
    gr.Markdown("Links: <a href='https://proceedings.mlr.press/v162/notin22a.html' target='_blank'>Paper</a>  <a href='https://github.com/OATML-Markslab/Tranception' target='_blank'>Code</a>  <a href='https://sites.google.com/view/proteingym/substitutions' target='_blank'>ProteinGym</a>  <a href='https://igem.org/teams/5247' target='_blank'>BASIS-China iGEM Team</a>")

if __name__ == "__main__":
    # Don't preload models at startup - this can cause Zero GPU initialization issues
    # Models will be loaded and cached on first use
    print("Starting Tranception app...")
    print("Note: Models will be downloaded on first use")
    print("Zero GPU spaces may sleep after ~15 minutes of inactivity")
    
    # Try to launch with ZeroGPU support first
    launch_success = False
    max_retries = 3
    retry_count = 0
    
    while not launch_success and retry_count < max_retries:
        try:
            if retry_count > 0:
                print(f"Retry attempt {retry_count}/{max_retries}...")
                time.sleep(2)  # Wait before retry
            
            # Launch with queue for proper Zero GPU support
            tranception_design.queue(max_size=20).launch(
                server_name="0.0.0.0",
                server_port=7860,
                show_error=True,
                share=False
            )
            launch_success = True
        except RuntimeError as e:
            if "Error while initializing ZeroGPU" in str(e):
                retry_count += 1
                if retry_count >= max_retries:
                    print(f"ZeroGPU initialization failed after {max_retries} attempts")
                    print("Falling back to CPU mode for stability")
                    print("Note: The app will run slower in CPU mode")
                    # Update runtime mode
                    RUNTIME_MODE = "CPU"
                    # Launch without queue which doesn't trigger ZeroGPU initialization
                    tranception_design.launch(
                        server_name="0.0.0.0",
                        server_port=7860,
                        show_error=True,
                        share=False
                    )
                    launch_success = True
            else:
                # Re-raise unexpected errors
                raise