File size: 8,009 Bytes
c244e32
 
1238fa5
 
 
c244e32
 
1238fa5
 
 
 
c244e32
 
 
 
 
 
 
 
 
 
 
 
 
 
1238fa5
 
c244e32
 
 
 
1238fa5
c244e32
1238fa5
c244e32
1238fa5
c244e32
1238fa5
c244e32
 
 
 
 
 
 
 
 
 
 
 
1238fa5
c244e32
 
1238fa5
c244e32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1238fa5
 
c244e32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1238fa5
 
 
 
 
 
 
 
 
 
 
 
c244e32
1238fa5
 
c244e32
 
 
 
1238fa5
c244e32
 
 
 
 
 
1238fa5
 
c244e32
1238fa5
 
c244e32
 
 
1238fa5
 
c244e32
 
 
 
 
 
 
 
 
1238fa5
c244e32
 
1238fa5
 
c244e32
 
 
 
 
 
 
 
 
1238fa5
c244e32
1238fa5
c244e32
 
 
 
 
 
 
 
1238fa5
 
c244e32
 
 
 
 
 
 
 
1238fa5
 
c244e32
 
 
 
1238fa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c244e32
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import os
import sys

# Force CPU-only for Hugging Face (no CUDA)
os.environ['CUDA_VISIBLE_DEVICES'] = ''
sys.path.append(os.getcwd())

import torch
import numpy as np
import smplx as smpl

from transformers import Wav2Vec2Processor
from glob import glob
import json

from nets import *
from trainer.options import parse_args
from data_utils import torch_data
from trainer.config import load_JsonConfig
import torch.nn.functional as F
from torch.utils import data
from data_utils.rotation_conversion import rotation_6d_to_matrix, matrix_to_axis_angle
from data_utils.lower_body import part2full, pred2poses, poses2pred, poses2poses
from visualise.rendering import RenderTool

# Global forced device
torch_device = torch.device('cpu')
device = 'cpu'

def init_model(model_name, model_path, args, config):
    if model_name == 's2g_face':
        generator = s2g_face(args, config)
    elif model_name == 's2g_body_vq':
        generator = s2g_body_vq(args, config)
    elif model_name == 's2g_body_pixel':
        generator = s2g_body_pixel(args, config)
    elif model_name == 's2g_LS3DCG':
        generator = LS3DCG(args, config)
    else:
        raise NotImplementedError

    model_ckpt = torch.load(model_path, map_location=torch.device('cpu'))
    if model_name == 'smplx_S2G':
        generator.generator.load_state_dict(model_ckpt['generator']['generator'])
    elif 'generator' in list(model_ckpt.keys()):
        generator.load_state_dict(model_ckpt['generator'])
    else:
        model_ckpt = {'generator': model_ckpt}
        generator.load_state_dict(model_ckpt)

    return generator.to(torch_device)

def init_dataloader(data_root, speakers, args, config):
    data_class = torch_data
    if 'smplx' in config.Model.model_name or 's2g' in config.Model.model_name:
        data_base = torch_data(
            data_root=data_root,
            speakers=speakers,
            split='test',
            limbscaling=False,
            normalization=config.Data.pose.normalization,
            norm_method=config.Data.pose.norm_method,
            split_trans_zero=False,
            num_pre_frames=config.Data.pose.pre_pose_length,
            num_generate_length=config.Data.pose.generate_length,
            num_frames=30,
            aud_feat_win_size=config.Data.aud.aud_feat_win_size,
            aud_feat_dim=config.Data.aud.aud_feat_dim,
            feat_method=config.Data.aud.feat_method,
            smplx=True,
            audio_sr=22000,
            convert_to_6d=config.Data.pose.convert_to_6d,
            expression=config.Data.pose.expression,
            config=config
        )
    else:
        raise NotImplementedError

    if config.Data.pose.normalization:
        norm_stats_fn = os.path.join(os.path.dirname(args.model_path), "norm_stats.npy")
        norm_stats = np.load(norm_stats_fn, allow_pickle=True)
        data_base.data_mean = norm_stats[0]
        data_base.data_std = norm_stats[1]

    data_base.get_dataset()
    infer_set = data_base.all_dataset
    infer_loader = data.DataLoader(data_base.all_dataset, batch_size=1, shuffle=False)

    return infer_set, infer_loader, norm_stats

def get_vertices(smplx_model, betas, result_list, exp, require_pose=False):
    vertices_list = []
    expression = torch.zeros([1, 50])

    for i in result_list:
        vertices = []
        for j in range(i.shape[0]):
            output = smplx_model(
                betas=betas,
                expression=i[j][165:265].unsqueeze_(dim=0) if exp else expression,
                jaw_pose=i[j][0:3].unsqueeze_(dim=0),
                leye_pose=i[j][3:6].unsqueeze_(dim=0),
                reye_pose=i[j][6:9].unsqueeze_(dim=0),
                global_orient=i[j][9:12].unsqueeze_(dim=0),
                body_pose=i[j][12:75].unsqueeze_(dim=0),
                left_hand_pose=i[j][75:120].unsqueeze_(dim=0),
                right_hand_pose=i[j][120:165].unsqueeze_(dim=0),
                return_verts=True
            )
            vertices.append(output.vertices.detach().cpu().numpy().squeeze())
        vertices_list.append(np.asarray(vertices))
    return vertices_list, None

global_orient = torch.tensor([3.0747, -0.0158, -0.0152])

def infer(g_body, g_face, smplx_model, rendertool, config, args):
    betas = torch.zeros([1, 300], dtype=torch.float64).to(torch_device)
    am = Wav2Vec2Processor.from_pretrained("vitouphy/wav2vec2-xls-r-300m-phoneme")
    am_sr = 16000
    cur_wav_file = args.audio_file
    id = args.id
    face = args.only_face
    stand = args.stand
    num_sample = args.num_sample

    if face:
        body_static = torch.zeros([1, 162], device=torch_device)
        body_static[:, 6:9] = global_orient.reshape(1, 3).repeat(body_static.shape[0], 1)

    result_list = []

    pred_face = g_face.infer_on_audio(cur_wav_file, initial_pose=None, norm_stats=None, w_pre=False, frame=None, am=am, am_sr=am_sr)
    pred_face = torch.tensor(pred_face).squeeze().to(torch_device)

    if config.Data.pose.convert_to_6d:
        pred_jaw = pred_face[:, :6].reshape(pred_face.shape[0], -1, 6)
        pred_jaw = matrix_to_axis_angle(rotation_6d_to_matrix(pred_jaw)).reshape(pred_face.shape[0], -1)
        pred_face = pred_face[:, 6:]
    else:
        pred_jaw = pred_face[:, :3]
        pred_face = pred_face[:, 3:]

    id = torch.tensor([id], device=torch_device)

    for i in range(num_sample):
        pred_res = g_body.infer_on_audio(cur_wav_file, initial_pose=None, norm_stats=None, txgfile=None, id=id, var=None, fps=30, w_pre=False)
        pred = torch.tensor(pred_res).squeeze().to(torch_device)

        if pred.shape[0] < pred_face.shape[0]:
            repeat_frame = pred[-1].unsqueeze(dim=0).repeat(pred_face.shape[0] - pred.shape[0], 1)
            pred = torch.cat([pred, repeat_frame], dim=0)
        else:
            pred = pred[:pred_face.shape[0], :]

        if config.Data.pose.convert_to_6d:
            pred = pred.reshape(pred.shape[0], -1, 6)
            pred = matrix_to_axis_angle(rotation_6d_to_matrix(pred)).reshape(pred.shape[0], -1)

        pred = torch.cat([pred_jaw, pred, pred_face], dim=-1)
        pred = part2full(pred, stand)
        if face:
            pred = torch.cat([pred[:, :3], body_static.repeat(pred.shape[0], 1), pred[:, -100:]], dim=-1)

        result_list.append(pred)

    vertices_list, _ = get_vertices(smplx_model, betas, result_list, config.Data.pose.expression)
    result_list = [res.to('cpu') for res in result_list]
    dict = np.concatenate(result_list, axis=0)
    file_name = 'visualise/video/' + config.Log.name + '/' + cur_wav_file.split('\\')[-1].split('.')[-2].split('/')[-1]
    np.save(file_name, dict)

    rendertool._render_sequences(cur_wav_file, vertices_list, stand=stand, face=face, whole_body=args.whole_body)

def main():
    parser = parse_args()
    args = parser.parse_args()

    # Force correct config file
    args.config_file = './config/body_pixel.json'

    config = load_JsonConfig(args.config_file)

    print('init model...')
    generator = init_model(args.body_model_name, args.body_model_path, args, config)
    generator_face = init_model(args.face_model_name, args.face_model_path, args, config)

    print('init smplx model...')
    smplx_model = smpl.create(
        model_path='./visualise/',
        model_type='smplx',
        create_global_orient=True,
        create_body_pose=True,
        create_betas=True,
        num_betas=300,
        create_left_hand_pose=True,
        create_right_hand_pose=True,
        use_pca=False,
        flat_hand_mean=False,
        create_expression=True,
        num_expression_coeffs=100,
        num_pca_comps=12,
        create_jaw_pose=True,
        create_leye_pose=True,
        create_reye_pose=True,
        create_transl=False,
        dtype=torch.float64
    ).to(torch_device)

    print('init rendertool...')
    rendertool = RenderTool('visualise/video/' + config.Log.name)

    infer(generator, generator_face, smplx_model, rendertool, config, args)

if __name__ == '__main__':
    main()