Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import warnings
|
2 |
import time
|
|
|
3 |
from typing import Dict, Tuple, List
|
4 |
from dataclasses import dataclass
|
5 |
|
@@ -226,10 +227,32 @@ class BenchmarkEvaluator:
|
|
226 |
EvaluationConfig(api_key=gemini_api_key)
|
227 |
)
|
228 |
self.stability_evaluator = StabilityEvaluator()
|
|
|
229 |
|
230 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
"""Evaluate a single model's responses"""
|
232 |
-
|
|
|
|
|
233 |
|
234 |
if answer_col not in df.columns:
|
235 |
raise ValueError(f"Column {answer_col} not found in dataframe")
|
@@ -247,11 +270,15 @@ class BenchmarkEvaluator:
|
|
247 |
stability_score = stability_results['stability_score']
|
248 |
combined_score = (creative_score + stability_score) / 2
|
249 |
|
|
|
|
|
|
|
250 |
results = {
|
251 |
'model': model_name,
|
252 |
'creativity_score': creative_score,
|
253 |
'stability_score': stability_score,
|
254 |
'combined_score': combined_score,
|
|
|
255 |
'creative_details': {
|
256 |
'creativity': creative_df["Креативность"].mean(),
|
257 |
'diversity': creative_df["Разнообразие"].mean(),
|
@@ -261,36 +288,96 @@ class BenchmarkEvaluator:
|
|
261 |
}
|
262 |
|
263 |
# Save detailed results
|
264 |
-
output_file = f'evaluated_responses_{model_name}.csv'
|
265 |
creative_df.to_csv(output_file, index=False)
|
266 |
print(f"Detailed results saved to {output_file}")
|
267 |
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
for model in models:
|
279 |
-
try:
|
280 |
-
model_results = self.evaluate_model(df, model, prompt_col)
|
281 |
-
results.append(model_results)
|
282 |
-
print(f"Completed evaluation for {model}")
|
283 |
-
except Exception as e:
|
284 |
-
print(f"Error evaluating {model}: {str(e)}")
|
285 |
-
|
286 |
-
benchmark_df = pd.DataFrame(results)
|
287 |
-
benchmark_df.to_csv('benchmark_results.csv', index=False)
|
288 |
-
print("Benchmark completed. Results saved to benchmark_results.csv")
|
289 |
|
290 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
|
292 |
|
293 |
def create_gradio_interface():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
with gr.Blocks(title="Model Response Evaluator") as app:
|
295 |
gr.Markdown("# Model Response Evaluator")
|
296 |
gr.Markdown("Upload a CSV file with prompts and model responses to evaluate and benchmark models.")
|
@@ -301,37 +388,105 @@ def create_gradio_interface():
|
|
301 |
with gr.Row():
|
302 |
csv_file = gr.File(label="Upload CSV with responses")
|
303 |
prompt_col = gr.Textbox(label="Prompt Column Name", value="rus_prompt")
|
304 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
305 |
|
306 |
evaluate_btn = gr.Button("Run Benchmark")
|
307 |
|
308 |
-
with gr.
|
309 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
|
311 |
-
def evaluate_batch(api_key, file, prompt_column, models_text):
|
312 |
try:
|
|
|
|
|
|
|
313 |
# Load the CSV file
|
314 |
file_path = file.name
|
315 |
df = pd.read_csv(file_path)
|
316 |
|
317 |
-
#
|
318 |
-
|
319 |
-
|
|
|
|
|
|
|
|
|
|
|
320 |
models = [m.strip() for m in models_text.split(',')]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
|
326 |
-
|
|
|
|
|
|
|
|
|
327 |
except Exception as e:
|
328 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
|
330 |
evaluate_btn.click(
|
331 |
evaluate_batch,
|
332 |
-
inputs=[gemini_api_key, csv_file, prompt_col, models_input],
|
333 |
-
outputs=
|
334 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
335 |
|
336 |
return app
|
337 |
|
|
|
1 |
import warnings
|
2 |
import time
|
3 |
+
import os
|
4 |
from typing import Dict, Tuple, List
|
5 |
from dataclasses import dataclass
|
6 |
|
|
|
227 |
EvaluationConfig(api_key=gemini_api_key)
|
228 |
)
|
229 |
self.stability_evaluator = StabilityEvaluator()
|
230 |
+
self.results_history = []
|
231 |
|
232 |
+
# Create results directory if it doesn't exist
|
233 |
+
os.makedirs('results', exist_ok=True)
|
234 |
+
|
235 |
+
# Load previous benchmark results if available
|
236 |
+
self.benchmark_file = 'results/benchmark_results.csv'
|
237 |
+
if os.path.exists(self.benchmark_file):
|
238 |
+
try:
|
239 |
+
self.leaderboard_df = pd.read_csv(self.benchmark_file)
|
240 |
+
except:
|
241 |
+
self.leaderboard_df = pd.DataFrame(columns=[
|
242 |
+
'model', 'creativity_score', 'stability_score',
|
243 |
+
'combined_score', 'evaluation_timestamp'
|
244 |
+
])
|
245 |
+
else:
|
246 |
+
self.leaderboard_df = pd.DataFrame(columns=[
|
247 |
+
'model', 'creativity_score', 'stability_score',
|
248 |
+
'combined_score', 'evaluation_timestamp'
|
249 |
+
])
|
250 |
+
|
251 |
+
def evaluate_model(self, df, model_name, prompt_col='rus_prompt', answer_col=None):
|
252 |
"""Evaluate a single model's responses"""
|
253 |
+
# Use direct answer column if provided, otherwise derive from model name
|
254 |
+
if answer_col is None:
|
255 |
+
answer_col = f"{model_name}_answers"
|
256 |
|
257 |
if answer_col not in df.columns:
|
258 |
raise ValueError(f"Column {answer_col} not found in dataframe")
|
|
|
270 |
stability_score = stability_results['stability_score']
|
271 |
combined_score = (creative_score + stability_score) / 2
|
272 |
|
273 |
+
# Add timestamp
|
274 |
+
timestamp = pd.Timestamp.now().strftime('%Y-%m-%d %H:%M:%S')
|
275 |
+
|
276 |
results = {
|
277 |
'model': model_name,
|
278 |
'creativity_score': creative_score,
|
279 |
'stability_score': stability_score,
|
280 |
'combined_score': combined_score,
|
281 |
+
'evaluation_timestamp': timestamp,
|
282 |
'creative_details': {
|
283 |
'creativity': creative_df["Креативность"].mean(),
|
284 |
'diversity': creative_df["Разнообразие"].mean(),
|
|
|
288 |
}
|
289 |
|
290 |
# Save detailed results
|
291 |
+
output_file = f'results/evaluated_responses_{model_name}_{timestamp.replace(":", "-").replace(" ", "_")}.csv'
|
292 |
creative_df.to_csv(output_file, index=False)
|
293 |
print(f"Detailed results saved to {output_file}")
|
294 |
|
295 |
+
# Update leaderboard
|
296 |
+
result_row = {
|
297 |
+
'model': model_name,
|
298 |
+
'creativity_score': creative_score,
|
299 |
+
'stability_score': stability_score,
|
300 |
+
'combined_score': combined_score,
|
301 |
+
'evaluation_timestamp': timestamp
|
302 |
+
}
|
303 |
+
self.leaderboard_df = pd.concat([self.leaderboard_df, pd.DataFrame([result_row])], ignore_index=True)
|
304 |
+
self.leaderboard_df.to_csv(self.benchmark_file, index=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
305 |
|
306 |
+
self.results_history.append(results)
|
307 |
+
return results, creative_df
|
308 |
+
|
309 |
+
def evaluate_all_models(self, df, models=None, model_columns=None, prompt_col='rus_prompt'):
|
310 |
+
"""Evaluate multiple models from the dataframe"""
|
311 |
+
if models is not None and model_columns is not None:
|
312 |
+
model_mapping = dict(zip(models, model_columns))
|
313 |
+
elif models is not None:
|
314 |
+
model_mapping = {model: f"{model}_answers" for model in models}
|
315 |
+
else:
|
316 |
+
answer_cols = [col for col in df.columns if col.endswith('_answers')]
|
317 |
+
models = [col.replace('_answers', '') for col in answer_cols]
|
318 |
+
model_mapping = dict(zip(models, answer_cols))
|
319 |
+
|
320 |
+
results = []
|
321 |
+
detail_dfs = []
|
322 |
+
|
323 |
+
for model, column in model_mapping.items():
|
324 |
+
try:
|
325 |
+
model_results, detail_df = self.evaluate_model(df, model, prompt_col, column)
|
326 |
+
results.append(model_results)
|
327 |
+
detail_dfs.append(detail_df)
|
328 |
+
print(f"Completed evaluation for {model}")
|
329 |
+
except Exception as e:
|
330 |
+
print(f"Error evaluating {model}: {str(e)}")
|
331 |
+
|
332 |
+
# Create combined results DataFrame
|
333 |
+
benchmark_df = pd.DataFrame([{
|
334 |
+
'model': r['model'],
|
335 |
+
'creativity_score': r['creativity_score'],
|
336 |
+
'stability_score': r['stability_score'],
|
337 |
+
'combined_score': r['combined_score'],
|
338 |
+
'evaluation_timestamp': r['evaluation_timestamp']
|
339 |
+
} for r in results])
|
340 |
+
|
341 |
+
timestamp = pd.Timestamp.now().strftime('%Y%m%d_%H%M%S')
|
342 |
+
benchmark_df.to_csv(f'results/benchmark_results_{timestamp}.csv', index=False)
|
343 |
+
print(f"Benchmark completed. Results saved to results/benchmark_results_{timestamp}.csv")
|
344 |
+
|
345 |
+
if detail_dfs:
|
346 |
+
combined_details = pd.concat(detail_dfs)
|
347 |
+
combined_details.to_csv(f'results/detailed_evaluation_{timestamp}.csv', index=False)
|
348 |
+
print(f"Detailed evaluation saved to results/detailed_evaluation_{timestamp}.csv")
|
349 |
+
|
350 |
+
return benchmark_df, self.leaderboard_df
|
351 |
+
|
352 |
+
def get_leaderboard(self):
|
353 |
+
"""Return the current leaderboard"""
|
354 |
+
if self.leaderboard_df.empty:
|
355 |
+
return pd.DataFrame(columns=['model', 'creativity_score', 'stability_score', 'combined_score', 'evaluation_timestamp'])
|
356 |
+
|
357 |
+
# Sort by combined score (descending)
|
358 |
+
sorted_df = self.leaderboard_df.sort_values(by='combined_score', ascending=False)
|
359 |
+
return sorted_df
|
360 |
|
361 |
|
362 |
def create_gradio_interface():
|
363 |
+
os.makedirs('results', exist_ok=True)
|
364 |
+
|
365 |
+
state = {
|
366 |
+
'evaluator': None,
|
367 |
+
'last_results': None,
|
368 |
+
'leaderboard': None
|
369 |
+
}
|
370 |
+
|
371 |
+
# Load existing leaderboard if available
|
372 |
+
leaderboard_path = 'results/benchmark_results.csv'
|
373 |
+
if os.path.exists(leaderboard_path):
|
374 |
+
try:
|
375 |
+
state['leaderboard'] = pd.read_csv(leaderboard_path)
|
376 |
+
except:
|
377 |
+
state['leaderboard'] = pd.DataFrame(columns=['model', 'creativity_score', 'stability_score', 'combined_score', 'evaluation_timestamp'])
|
378 |
+
else:
|
379 |
+
state['leaderboard'] = pd.DataFrame(columns=['model', 'creativity_score', 'stability_score', 'combined_score', 'evaluation_timestamp'])
|
380 |
+
|
381 |
with gr.Blocks(title="Model Response Evaluator") as app:
|
382 |
gr.Markdown("# Model Response Evaluator")
|
383 |
gr.Markdown("Upload a CSV file with prompts and model responses to evaluate and benchmark models.")
|
|
|
388 |
with gr.Row():
|
389 |
csv_file = gr.File(label="Upload CSV with responses")
|
390 |
prompt_col = gr.Textbox(label="Prompt Column Name", value="rus_prompt")
|
391 |
+
|
392 |
+
with gr.Row():
|
393 |
+
model_input_method = gr.Radio(
|
394 |
+
choices=["Auto-detect from columns", "Specify models and columns"],
|
395 |
+
label="Model Input Method",
|
396 |
+
value="Auto-detect from columns"
|
397 |
+
)
|
398 |
+
|
399 |
+
with gr.Row(visible=False) as model_config_row:
|
400 |
+
models_input = gr.Textbox(label="Model names (comma-separated)")
|
401 |
+
answer_cols_input = gr.Textbox(label="Answer column names (comma-separated, matching model order)")
|
402 |
|
403 |
evaluate_btn = gr.Button("Run Benchmark")
|
404 |
|
405 |
+
with gr.Tabs():
|
406 |
+
with gr.Tab("Current Results"):
|
407 |
+
current_results = gr.DataFrame(label="Current Benchmark Results")
|
408 |
+
download_btn = gr.Button("Download Results CSV")
|
409 |
+
current_results_file = gr.File(label="Download Results")
|
410 |
+
|
411 |
+
with gr.Tab("Leaderboard"):
|
412 |
+
leaderboard_table = gr.DataFrame(value=state['leaderboard'], label="Model Leaderboard")
|
413 |
+
refresh_btn = gr.Button("Refresh Leaderboard")
|
414 |
+
|
415 |
+
def toggle_model_input(choice):
|
416 |
+
return gr.Row(visible=(choice == "Specify models and columns"))
|
417 |
+
|
418 |
+
model_input_method.change(toggle_model_input, model_input_method, model_config_row)
|
419 |
|
420 |
+
def evaluate_batch(api_key, file, prompt_column, input_method, models_text, answer_cols_text):
|
421 |
try:
|
422 |
+
if not api_key:
|
423 |
+
return None, None, gr.DataFrame(), gr.File()
|
424 |
+
|
425 |
# Load the CSV file
|
426 |
file_path = file.name
|
427 |
df = pd.read_csv(file_path)
|
428 |
|
429 |
+
# Initialize evaluator
|
430 |
+
state['evaluator'] = BenchmarkEvaluator(api_key)
|
431 |
+
|
432 |
+
# Process model names and columns if provided
|
433 |
+
if input_method == "Specify models and columns":
|
434 |
+
if not models_text.strip() or not answer_cols_text.strip():
|
435 |
+
return None, None, gr.DataFrame(), gr.File()
|
436 |
+
|
437 |
models = [m.strip() for m in models_text.split(',')]
|
438 |
+
answer_cols = [c.strip() for c in answer_cols_text.split(',')]
|
439 |
+
|
440 |
+
if len(models) != len(answer_cols):
|
441 |
+
return None, None, gr.DataFrame(pd.DataFrame({'Error': ['Number of models and answer columns must match']})), gr.File()
|
442 |
+
|
443 |
+
results_df, leaderboard_df = state['evaluator'].evaluate_all_models(
|
444 |
+
df, models=models, model_columns=answer_cols, prompt_col=prompt_column
|
445 |
+
)
|
446 |
+
else:
|
447 |
+
# Auto-detect mode
|
448 |
+
results_df, leaderboard_df = state['evaluator'].evaluate_all_models(
|
449 |
+
df, prompt_col=prompt_column
|
450 |
+
)
|
451 |
|
452 |
+
timestamp = pd.Timestamp.now().strftime('%Y%m%d_%H%M%S')
|
453 |
+
results_path = f'results/benchmark_results_{timestamp}.csv'
|
454 |
+
results_df.to_csv(results_path, index=False)
|
455 |
|
456 |
+
# Update state
|
457 |
+
state['last_results'] = results_df
|
458 |
+
state['leaderboard'] = leaderboard_df
|
459 |
+
|
460 |
+
return results_df, leaderboard_df, results_path, leaderboard_df
|
461 |
except Exception as e:
|
462 |
+
error_df = pd.DataFrame({'Error': [str(e)]})
|
463 |
+
return error_df, state['leaderboard'], gr.DataFrame(), gr.File()
|
464 |
+
|
465 |
+
def download_results():
|
466 |
+
if state['last_results'] is not None:
|
467 |
+
timestamp = pd.Timestamp.now().strftime('%Y%m%d_%H%M%S')
|
468 |
+
file_path = f'results/benchmark_download_{timestamp}.csv'
|
469 |
+
state['last_results'].to_csv(file_path, index=False)
|
470 |
+
return file_path
|
471 |
+
return None
|
472 |
+
|
473 |
+
def refresh_leaderboard():
|
474 |
+
# Reload leaderboard from file
|
475 |
+
if os.path.exists('results/benchmark_results.csv'):
|
476 |
+
state['leaderboard'] = pd.read_csv('results/benchmark_results.csv')
|
477 |
+
return state['leaderboard']
|
478 |
|
479 |
evaluate_btn.click(
|
480 |
evaluate_batch,
|
481 |
+
inputs=[gemini_api_key, csv_file, prompt_col, model_input_method, models_input, answer_cols_input],
|
482 |
+
outputs=[current_results, leaderboard_table, gr.DataFrame(), current_results_file]
|
483 |
)
|
484 |
+
|
485 |
+
download_btn.click(download_results, inputs=[], outputs=[current_results_file])
|
486 |
+
refresh_btn.click(refresh_leaderboard, inputs=[], outputs=[leaderboard_table])
|
487 |
+
|
488 |
+
# Initialize the leaderboard
|
489 |
+
leaderboard_table.value = state['leaderboard']
|
490 |
|
491 |
return app
|
492 |
|