Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoProcessor, BlipForConditionalGeneration | |
from PIL import Image | |
import numpy as np | |
# Load BLIP model | |
processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") | |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") | |
def caption_image(input_image: np.ndarray): | |
# Convert numpy array to PIL Image | |
raw_image = Image.fromarray(input_image).convert('RGB') | |
# Generate caption | |
inputs = processor(images=raw_image, text="a photo of", return_tensors="pt") | |
outputs = model.generate(**inputs, max_new_tokens=50) | |
caption = processor.decode(outputs[0], skip_special_tokens=True) | |
return caption | |
# Gradio interface | |
iface = gr.Interface( | |
fn=caption_image, | |
inputs=gr.Image(), | |
outputs="text", | |
title="Image Captioning", | |
) | |
iface.launch() |