Muhammad2019abdelfattah's picture
Upload 2 files
9ffc4c2 verified
import gradio as gr
from transformers import VisionEncoderDecoderModel, DonutProcessor
from PIL import Image
import torch
# Load the model and processor
model_checkpoint_path = "Muhammad2019abdelfattah/Unichart_Fine-tuning"
model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint_path)
processor = DonutProcessor.from_pretrained(model_checkpoint_path) # Assuming DonutProcessor is used
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
def generate_summary(image: Image.Image) -> str:
try:
# Define the input prompt for summarization
input_prompt = "<summarize_chart> <s_answer>"
# Load and process the image
img = image.convert("RGB")
pixel_values = processor(img, return_tensors="pt").pixel_values.to(device)
# Encode the input prompt
decoder_input_ids = processor.tokenizer(input_prompt, add_special_tokens=False, return_tensors="pt").input_ids.to(device)
# Generate the summary
outputs = model.generate(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids,
max_length=512, # Adjust max_length as needed
early_stopping=True,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id=processor.tokenizer.eos_token_id,
use_cache=True,
num_beams=4,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,
)
# Decode the output
sequence = processor.batch_decode(outputs.sequences)[0]
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
summary = sequence.split("<s_answer>")[1].strip()
return summary
except Exception as e:
print(f"An error occurred: {e}")
return "An error occurred during summarization."
# Create Gradio interface
iface = gr.Interface(
fn=generate_summary, # Function to call
inputs=gr.Image(type="pil"), # Input type (image)
outputs="text", # Output type (text)
title="Chart Summarization",
description="Upload a chart image to get a summary based on the image content."
)
# Launch the Gradio interface on an automatically selected port
iface.launch(share=True)