Spaces:
Sleeping
Sleeping
File size: 11,375 Bytes
bd891ff 1912d57 59d62bb 1912d57 59d62bb 1912d57 59d62bb bd891ff 1523d77 3734d84 1912d57 6472b08 1912d57 3734d84 1912d57 3734d84 1912d57 1523d77 1912d57 3734d84 1523d77 1912d57 3734d84 1912d57 3734d84 1912d57 3734d84 1912d57 3734d84 1912d57 3734d84 1523d77 1912d57 1523d77 1912d57 1523d77 1912d57 1523d77 1912d57 1523d77 1912d57 83eb0c6 1523d77 6472b08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
# import streamlit as st
# import numpy as np
# import cv2
# import warnings
# import os
# # Suppress warnings
# warnings.filterwarnings("ignore", category=FutureWarning)
# warnings.filterwarnings("ignore", category=UserWarning)
# # Try importing TensorFlow
# try:
# from tensorflow.keras.models import load_model
# from tensorflow.keras.preprocessing import image
# except ImportError:
# st.error("Failed to import TensorFlow. Please make sure it's installed correctly.")
# # Try importing PyTorch and Detectron2
# try:
# import torch
# import detectron2
# except ImportError:
# with st.spinner("Installing PyTorch and Detectron2..."):
# os.system("pip install torch torchvision")
# os.system("pip install 'git+https://github.com/facebookresearch/detectron2.git'")
# import torch
# import detectron2
# import streamlit as st
# import numpy as np
# import cv2
# import torch
# import os
# from PIL import Image
# from tensorflow.keras.models import load_model
# from tensorflow.keras.preprocessing import image
# from detectron2.engine import DefaultPredictor
# from detectron2.config import get_cfg
# from detectron2.utils.visualizer import Visualizer
# from detectron2.data import MetadataCatalog
# # Suppress warnings
# import warnings
# import tensorflow as tf
# warnings.filterwarnings("ignore")
# tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
# @st.cache_resource
# def load_models():
# model_name = load_model('name_model_inception.h5')
# model_quality = load_model('type_model_inception.h5')
# return model_name, model_quality
# model_name, model_quality = load_models()
# # Detectron2 setup
# @st.cache_resource
# def load_detectron_model(fruit_name):
# cfg = get_cfg()
# config_path = os.path.join(f"{fruit_name.lower()}_config.yaml")
# cfg.merge_from_file(config_path)
# model_path = os.path.join(f"{fruit_name}_model.pth")
# cfg.MODEL.WEIGHTS = model_path
# cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
# cfg.MODEL.DEVICE = 'cpu'
# predictor = DefaultPredictor(cfg)
# return predictor, cfg
# # Labels
# label_map_name = {
# 0: "Banana", 1: "Cucumber", 2: "Grape", 3: "Kaki", 4: "Papaya",
# 5: "Peach", 6: "Pear", 7: "Peeper", 8: "Strawberry", 9: "Watermelon",
# 10: "tomato"
# }
# label_map_quality = {0: "Good", 1: "Mild", 2: "Rotten"}
# def predict_fruit(img):
# # Preprocess image
# img = Image.fromarray(img.astype('uint8'), 'RGB')
# img = img.resize((224, 224))
# x = image.img_to_array(img)
# x = np.expand_dims(x, axis=0)
# x = x / 255.0
# # Predict
# pred_name = model_name.predict(x)
# pred_quality = model_quality.predict(x)
# predicted_name = label_map_name[np.argmax(pred_name, axis=1)[0]]
# predicted_quality = label_map_quality[np.argmax(pred_quality, axis=1)[0]]
# return predicted_name, predicted_quality, img
# def main():
# st.title("Automated Fruits Monitoring System")
# st.write("Upload an image of a fruit to detect its type, quality, and potential damage.")
# uploaded_file = st.file_uploader("Choose a fruit image...", type=["jpg", "jpeg", "png"])
# if uploaded_file is not None:
# image = Image.open(uploaded_file)
# st.image(image, caption="Uploaded Image", use_column_width=True)
# if st.button("Analyze"):
# predicted_name, predicted_quality, img = predict_fruit(np.array(image))
# st.write(f"Fruits Type Detection: {predicted_name}")
# st.write(f"Fruits Quality Classification: {predicted_quality}")
# if predicted_name.lower() in ["kaki", "tomato", "strawberry", "peeper", "pear", "peach", "papaya", "watermelon", "grape", "banana", "cucumber"] and predicted_quality in ["Mild", "Rotten"]:
# st.write("Segmentation of Defective Region:")
# try:
# predictor, cfg = load_detectron_model(predicted_name)
# outputs = predictor(cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR))
# v = Visualizer(np.array(img), MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=0.8)
# out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
# st.image(out.get_image(), caption="Damage Detection Result", use_column_width=True)
# except Exception as e:
# st.error(f"Error in damage detection: {str(e)}")
# else:
# st.write("No damage detection performed for this fruit or quality level.")
# if __name__ == "__main__":
# main()
import streamlit as st
import numpy as np
import cv2
import warnings
import os
from pathlib import Path
from PIL import Image
import tensorflow as tf
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog
# Suppress warnings
warnings.filterwarnings("ignore")
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
# Configuration
MODEL_CONFIG = {
'name_model': 'name_model_inception.h5',
'quality_model': 'type_model_inception.h5',
'input_size': (224, 224),
'score_threshold': 0.5
}
LABEL_MAPS = {
'name': {
0: "Banana", 1: "Cucumber", 2: "Grape", 3: "Kaki", 4: "Papaya",
5: "Peach", 6: "Pear", 7: "Peeper", 8: "Strawberry", 9: "Watermelon",
10: "tomato"
},
'quality': {0: "Good", 1: "Mild", 2: "Rotten"}
}
@st.cache_resource
def load_classification_models():
"""Load and cache the classification models."""
try:
model_name = load_model(MODEL_CONFIG['name_model'])
model_quality = load_model(MODEL_CONFIG['quality_model'])
return model_name, model_quality
except Exception as e:
st.error(f"Error loading classification models: {str(e)}")
return None, None
@st.cache_resource
def load_detectron_model(fruit_name: str):
"""Load and cache the Detectron2 model for damage detection."""
try:
cfg = get_cfg()
config_path = Path(f"{fruit_name.lower()}_config.yaml")
model_path = Path(f"{fruit_name}_model.pth")
if not config_path.exists() or not model_path.exists():
raise FileNotFoundError(f"Model files not found for {fruit_name}")
cfg.merge_from_file(str(config_path))
cfg.MODEL.WEIGHTS = str(model_path)
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = MODEL_CONFIG['score_threshold']
cfg.MODEL.DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
return DefaultPredictor(cfg), cfg
except Exception as e:
st.error(f"Error loading Detectron2 model: {str(e)}")
return None, None
def preprocess_image(img: np.ndarray) -> tuple:
"""Preprocess the input image for model prediction."""
try:
# Convert to PIL Image if necessary
if isinstance(img, np.ndarray):
img = Image.fromarray(img.astype('uint8'), 'RGB')
# Resize and prepare for model input
img_resized = img.resize(MODEL_CONFIG['input_size'])
img_array = image.img_to_array(img_resized)
img_expanded = np.expand_dims(img_array, axis=0)
img_normalized = img_expanded / 255.0
return img_normalized, img_resized
except Exception as e:
st.error(f"Error preprocessing image: {str(e)}")
return None, None
def predict_fruit(img: np.ndarray) -> tuple:
"""Predict fruit type and quality."""
model_name, model_quality = load_classification_models()
if model_name is None or model_quality is None:
return None, None, None
img_normalized, img_resized = preprocess_image(img)
if img_normalized is None:
return None, None, None
try:
# Make predictions
pred_name = model_name.predict(img_normalized)
pred_quality = model_quality.predict(img_normalized)
# Get predicted labels
predicted_name = LABEL_MAPS['name'][np.argmax(pred_name, axis=1)[0]]
predicted_quality = LABEL_MAPS['quality'][np.argmax(pred_quality, axis=1)[0]]
return predicted_name, predicted_quality, img_resized
except Exception as e:
st.error(f"Error making predictions: {str(e)}")
return None, None, None
def detect_damage(img: Image, fruit_name: str) -> np.ndarray:
"""Detect and visualize damage in the fruit image."""
predictor, cfg = load_detectron_model(fruit_name)
if predictor is None or cfg is None:
return None
try:
outputs = predictor(cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR))
v = Visualizer(np.array(img), MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=0.8)
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
return out.get_image()
except Exception as e:
st.error(f"Error in damage detection: {str(e)}")
return None
def main():
st.set_page_config(page_title="Fruit Quality Analysis", layout="wide")
st.title("Automated Fruits Monitoring System")
st.write("Upload an image of a fruit to detect its type, quality, and potential damage.")
uploaded_file = st.file_uploader("Choose a fruit image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
# Create two columns for layout
col1, col2 = st.columns(2)
# Display uploaded image
image = Image.open(uploaded_file)
col1.image(image, caption="Uploaded Image", use_column_width=True)
if col1.button("Analyze"):
with st.spinner("Analyzing image..."):
predicted_name, predicted_quality, img_resized = predict_fruit(np.array(image))
if predicted_name and predicted_quality:
# Display results
col2.markdown("### Analysis Results")
col2.markdown(f"**Fruit Type:** {predicted_name}")
col2.markdown(f"**Quality:** {predicted_quality}")
# Check if damage detection is needed
if (predicted_name.lower() in LABEL_MAPS['name'].values() and
predicted_quality in ["Mild", "Rotten"]):
col2.markdown("### Damage Detection")
damage_image = detect_damage(img_resized, predicted_name)
if damage_image is not None:
col2.image(damage_image, caption="Detected Damage Regions",
use_column_width=True)
# Add download button for the damage detection result
col2.download_button(
label="Download Analysis Result",
data=cv2.imencode('.png', damage_image)[1].tobytes(),
file_name=f"{predicted_name}_damage_analysis.png",
mime="image/png"
)
if __name__ == "__main__":
main() |