File size: 55,152 Bytes
bd891ff
df52263
 
 
 
 
8beeb1a
df52263
 
 
8beeb1a
df52263
 
 
 
 
 
8beeb1a
df52263
 
 
 
 
 
 
 
8beeb1a
df52263
 
8beeb1a
 
52ed7df
 
 
 
 
64ba694
52ed7df
 
 
 
 
 
1912d57
52ed7df
 
 
 
 
1912d57
52ed7df
 
64ba694
 
52ed7df
1912d57
64ba694
 
 
52ed7df
 
64ba694
 
 
 
 
 
 
 
52ed7df
 
 
 
 
 
64ba694
52ed7df
 
1912d57
64ba694
 
 
 
 
 
 
8beeb1a
64ba694
 
 
8beeb1a
64ba694
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8beeb1a
64ba694
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8beeb1a
64ba694
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8beeb1a
64ba694
 
 
8beeb1a
64ba694
 
8beeb1a
64ba694
 
8beeb1a
64ba694
 
 
 
8beeb1a
64ba694
 
 
 
 
 
 
 
 
 
 
 
 
8beeb1a
64ba694
 
 
 
8beeb1a
64ba694
8beeb1a
64ba694
 
8beeb1a
64ba694
 
 
8beeb1a
64ba694
 
8beeb1a
64ba694
 
8beeb1a
64ba694
 
 
 
8beeb1a
64ba694
1912d57
64ba694
 
 
 
8beeb1a
64ba694
 
8beeb1a
64ba694
 
8beeb1a
64ba694
 
 
 
 
 
 
8beeb1a
64ba694
 
 
 
 
 
 
 
 
 
 
 
8beeb1a
64ba694
8beeb1a
64ba694
 
 
 
 
8beeb1a
64ba694
 
 
 
 
 
8beeb1a
64ba694
 
 
 
 
 
 
 
 
 
8beeb1a
64ba694
 
 
 
 
8beeb1a
64ba694
 
 
 
 
 
 
 
 
 
 
 
 
 
8beeb1a
64ba694
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8beeb1a
64ba694
 
 
 
 
 
 
 
 
 
8beeb1a
64ba694
 
 
 
 
 
 
 
8beeb1a
64ba694
 
 
8beeb1a
64ba694
 
8beeb1a
64ba694
 
 
 
 
 
 
8beeb1a
64ba694
 
 
8beeb1a
64ba694
 
 
 
8beeb1a
64ba694
 
 
 
 
 
8beeb1a
64ba694
 
 
 
 
 
8beeb1a
64ba694
1912d57
64ba694
 
 
8beeb1a
64ba694
 
8beeb1a
64ba694
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8beeb1a
64ba694
 
 
8beeb1a
64ba694
8beeb1a
64ba694
 
8beeb1a
64ba694
 
 
8beeb1a
64ba694
 
8beeb1a
64ba694
 
 
 
 
8beeb1a
64ba694
 
 
 
 
 
 
8beeb1a
64ba694
 
8beeb1a
64ba694
 
8beeb1a
64ba694
 
 
 
8beeb1a
64ba694
 
 
 
 
 
 
 
8beeb1a
64ba694
 
8beeb1a
64ba694
 
 
 
8beeb1a
64ba694
 
 
 
 
 
8beeb1a
64ba694
8beeb1a
64ba694
 
8beeb1a
64ba694
 
8beeb1a
64ba694
 
 
 
 
8beeb1a
64ba694
 
 
 
 
 
 
 
 
8beeb1a
64ba694
 
 
 
 
 
8beeb1a
64ba694
 
 
 
 
 
 
 
8beeb1a
64ba694
 
8beeb1a
64ba694
 
 
 
 
 
 
 
 
 
 
8beeb1a
64ba694
 
 
 
8beeb1a
64ba694
 
8beeb1a
64ba694
 
8beeb1a
64ba694
 
8beeb1a
64ba694
 
 
 
8beeb1a
64ba694
8beeb1a
64ba694
 
 
 
 
 
8beeb1a
64ba694
8beeb1a
64ba694
 
 
 
 
 
8beeb1a
64ba694
 
 
8beeb1a
64ba694
 
8beeb1a
64ba694
 
 
8beeb1a
64ba694
 
 
 
8beeb1a
64ba694
 
8beeb1a
64ba694
 
8beeb1a
64ba694
 
8beeb1a
64ba694
 
 
 
8beeb1a
64ba694
 
 
 
8beeb1a
64ba694
 
8beeb1a
64ba694
 
 
 
 
 
 
 
 
 
 
8beeb1a
64ba694
 
 
8beeb1a
64ba694
8beeb1a
64ba694
 
8beeb1a
64ba694
 
8beeb1a
64ba694
 
 
 
 
 
8beeb1a
64ba694
 
8beeb1a
64ba694
 
 
 
8beeb1a
64ba694
 
8beeb1a
64ba694
 
 
8beeb1a
64ba694
 
8beeb1a
64ba694
 
 
8beeb1a
64ba694
 
 
 
 
 
 
 
 
8beeb1a
64ba694
 
8beeb1a
64ba694
 
8beeb1a
64ba694
 
 
 
 
 
 
 
 
8beeb1a
64ba694
 
8beeb1a
64ba694
 
8beeb1a
64ba694
 
8beeb1a
64ba694
 
 
 
 
 
 
 
 
8beeb1a
64ba694
 
8beeb1a
64ba694
 
 
 
 
 
 
 
 
 
8beeb1a
64ba694
 
 
 
 
 
 
 
8beeb1a
64ba694
 
 
8beeb1a
64ba694
 
 
 
8beeb1a
64ba694
 
 
 
 
8beeb1a
64ba694
 
 
 
 
8beeb1a
64ba694
 
8beeb1a
64ba694
8beeb1a
64ba694
 
 
 
 
 
 
 
 
 
 
8beeb1a
64ba694
 
 
 
 
 
 
 
 
 
 
 
8beeb1a
64ba694
 
8beeb1a
64ba694
 
 
8beeb1a
64ba694
 
8beeb1a
64ba694
 
 
 
 
 
 
 
 
 
 
8beeb1a
64ba694
 
 
 
 
 
 
 
8beeb1a
64ba694
 
 
 
 
 
 
 
8beeb1a
64ba694
 
 
8beeb1a
64ba694
 
8beeb1a
64ba694
 
 
 
 
8beeb1a
64ba694
 
 
 
 
 
 
 
 
8beeb1a
64ba694
 
8beeb1a
64ba694
 
 
 
 
 
 
 
 
8beeb1a
64ba694
 
 
 
8beeb1a
64ba694
 
 
 
 
8beeb1a
64ba694
 
 
 
 
 
 
8beeb1a
64ba694
 
8beeb1a
64ba694
 
8beeb1a
64ba694
 
 
 
 
 
 
8beeb1a
64ba694
 
 
 
 
8beeb1a
64ba694
 
 
 
 
 
8beeb1a
64ba694
 
8beeb1a
64ba694
 
8beeb1a
 
 
3734d84
 
1523d77
3734d84
 
64ba694
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1912d57
64ba694
 
1912d57
64ba694
 
 
 
1912d57
64ba694
 
 
 
 
 
 
 
 
 
 
1912d57
64ba694
 
 
 
 
1912d57
64ba694
 
 
 
 
 
 
 
 
 
1912d57
64ba694
 
 
1912d57
64ba694
 
 
 
1912d57
64ba694
 
 
1912d57
64ba694
 
 
 
 
 
 
 
 
 
1912d57
64ba694
 
 
 
 
 
 
 
 
 
 
1912d57
64ba694
 
1912d57
64ba694
1912d57
64ba694
 
 
1912d57
64ba694
 
 
1912d57
64ba694
 
 
1912d57
64ba694
 
 
 
 
1912d57
64ba694
 
 
1912d57
64ba694
 
1912d57
64ba694
 
 
1912d57
64ba694
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328

import streamlit as st
import numpy as np
import cv2
import warnings
import os

# Suppress warnings
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)

# Try importing TensorFlow
try:
    from tensorflow.keras.models import load_model
    from tensorflow.keras.preprocessing import image
except ImportError:
    st.error("Failed to import TensorFlow. Please make sure it's installed correctly.")

# Try importing PyTorch and Detectron2
try:
    import torch
    import detectron2
except ImportError:
    with st.spinner("Installing PyTorch and Detectron2..."):
        os.system("pip install torch torchvision")
        os.system("pip install 'git+https://github.com/facebookresearch/detectron2.git'")

    import torch
    import detectron2


import streamlit as st
import numpy as np
import cv2
import torch
import os
from PIL import Image
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog

# Suppress warnings
import warnings
import tensorflow as tf
warnings.filterwarnings("ignore")
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)

@st.cache_resource
def load_models():
    model_name = load_model('name_model_inception.h5')
    model_quality = load_model('type_model_inception.h5')
    return model_name, model_quality

model_name, model_quality = load_models()

# Detectron2 setup
@st.cache_resource
def load_detectron_model(fruit_name):
    cfg = get_cfg()
    config_path = os.path.join(f"{fruit_name.lower()}_config.yaml")
    cfg.merge_from_file(config_path)
    model_path = os.path.join(f"{fruit_name}_model.pth")
    cfg.MODEL.WEIGHTS = model_path
    cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
    cfg.MODEL.DEVICE = 'cpu'
    predictor = DefaultPredictor(cfg)
    return predictor, cfg

# Labels
label_map_name = {
    0: "Banana", 1: "Cucumber", 2: "Grape", 3: "Kaki", 4: "Papaya",
    5: "Peach", 6: "Pear", 7: "Peeper", 8: "Strawberry", 9: "Watermelon",
    10: "tomato"
}
label_map_quality = {0: "Good", 1: "Mild", 2: "Rotten"}

def predict_fruit(img):
    # Preprocess image
    img = Image.fromarray(img.astype('uint8'), 'RGB')
    img = img.resize((224, 224))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = x / 255.0

    # Predict
    pred_name = model_name.predict(x)
    pred_quality = model_quality.predict(x)

    predicted_name = label_map_name[np.argmax(pred_name, axis=1)[0]]
    predicted_quality = label_map_quality[np.argmax(pred_quality, axis=1)[0]]

    return predicted_name, predicted_quality, img

def main():
    st.title("Automated Fruits Monitoring  System")
    st.write("Upload an image of a fruit to detect its type, quality, and potential damage.")

    uploaded_file = st.file_uploader("Choose a fruit image...", type=["jpg", "jpeg", "png"])

    if uploaded_file is not None:
        image = Image.open(uploaded_file)
        st.image(image, caption="Uploaded Image", use_column_width=True)

        if st.button("Analyze"):
            predicted_name, predicted_quality, img = predict_fruit(np.array(image))

            st.write(f"Fruits Type Detection:  {predicted_name}")
            st.write(f"Fruits Quality Classification:  {predicted_quality}")

            if predicted_name.lower() in ["kaki", "tomato", "strawberry", "peeper", "pear", "peach", "papaya", "watermelon", "grape", "banana", "cucumber"] and predicted_quality in ["Mild", "Rotten"]:
                st.write("Segmentation of Defective Region:")
                try:
                    predictor, cfg = load_detectron_model(predicted_name)
                    outputs = predictor(cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR))
                    v = Visualizer(np.array(img), MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=0.8)
                    out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
                    st.image(out.get_image(), caption="Damage Detection Result", use_column_width=True)
                except Exception as e:
                    st.error(f"Error in damage detection: {str(e)}")
            else:
                st.write("No damage detection performed for this fruit or quality level.")

if __name__ == "__main__":
    main()







# import streamlit as st
# import numpy as np
# import cv2
# import torch
# import os
# import pandas as pd
# import plotly.express as px
# import plotly.graph_objects as go
# import time
# import sqlite3
# from datetime import datetime
# from PIL import Image, ImageEnhance, ImageFilter
# import io
# import base64
# from streamlit_option_menu import option_menu
# from tensorflow.keras.models import load_model
# from tensorflow.keras.preprocessing import image
# from detectron2.engine import DefaultPredictor
# from detectron2.config import get_cfg
# from detectron2.utils.visualizer import Visualizer
# from detectron2.data import MetadataCatalog
# from detectron2 import model_zoo

# # Suppress warnings
# import warnings
# import tensorflow as tf
# warnings.filterwarnings("ignore")
# tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)

# # Initialize session state
# if 'history' not in st.session_state:
#     st.session_state.history = []
# if 'dark_mode' not in st.session_state:
#     st.session_state.dark_mode = False
# if 'language' not in st.session_state:
#     st.session_state.language = 'English'

# # Database setup
# def init_db():
#     conn = sqlite3.connect('fruit_analysis.db', check_same_thread=False)
#     c = conn.cursor()
#     c.execute('''
#     CREATE TABLE IF NOT EXISTS analysis_history
#     (id INTEGER PRIMARY KEY AUTOINCREMENT,
#      timestamp TEXT,
#      fruit_type TEXT,
#      quality TEXT,
#      confidence_score REAL,
#      image_path TEXT)
#     ''')
#     conn.commit()
#     return conn

# conn = init_db()

# # Translations
# translations = {
#     'English': {
#         'title': 'Advanced Fruit Quality Monitoring System',
#         'upload': 'Upload a fruit image...',
#         'analyze': 'Analyze Image',
#         'type': 'Fruit Type:',
#         'quality': 'Fruit Quality:',
#         'confidence': 'Confidence Score:',
#         'ripeness': 'Estimated Ripeness:',
#         'nutrition': 'Estimated Nutritional Content:',
#         'damage': 'Segmentation of Defective Region:',
#         'storage': 'Recommended Storage Conditions:',
#         'shelf_life': 'Estimated Shelf Life:',
#         'history': 'Analysis History',
#         'webcam': 'Use Webcam',
#         'settings': 'Settings',
#         'dashboard': 'Dashboard',
#         'language': 'Language',
#         'dark_mode': 'Dark Mode',
#         'batch': 'Batch Analysis',
#         'export': 'Export Report',
#         'no_damage': 'No damage detected.'
#     },
#     'Spanish': {
#         'title': 'Sistema Avanzado de Monitoreo de Calidad de Frutas',
#         'upload': 'Subir una imagen de fruta...',
#         'analyze': 'Analizar Imagen',
#         'type': 'Tipo de Fruta:',
#         'quality': 'Calidad de la Fruta:',
#         'confidence': 'Puntuación de Confianza:',
#         'ripeness': 'Madurez Estimada:',
#         'nutrition': 'Contenido Nutricional Estimado:',
#         'damage': 'Segmentación de Región Defectuosa:',
#         'storage': 'Condiciones de Almacenamiento Recomendadas:',
#         'shelf_life': 'Vida Útil Estimada:',
#         'history': 'Historial de Análisis',
#         'webcam': 'Usar Cámara Web',
#         'settings': 'Configuración',
#         'dashboard': 'Panel',
#         'language': 'Idioma',
#         'dark_mode': 'Modo Oscuro',
#         'batch': 'Análisis por Lotes',
#         'export': 'Exportar Informe',
#         'no_damage': 'No se detectó daño.'
#     },
#     'French': {
#         'title': 'Système Avancé de Surveillance de la Qualité des Fruits',
#         'upload': 'Télécharger une image de fruit...',
#         'analyze': 'Analyser l\'Image',
#         'type': 'Type de Fruit:',
#         'quality': 'Qualité du Fruit:',
#         'confidence': 'Score de Confiance:',
#         'ripeness': 'Maturité Estimée:',
#         'nutrition': 'Contenu Nutritionnel Estimé:',
#         'damage': 'Segmentation de la Région Défectueuse:',
#         'storage': 'Conditions de Stockage Recommandées:',
#         'shelf_life': 'Durée de Conservation Estimée:',
#         'history': 'Historique d\'Analyse',
#         'webcam': 'Utiliser la Webcam',
#         'settings': 'Paramètres',
#         'dashboard': 'Tableau de Bord',
#         'language': 'Langue',
#         'dark_mode': 'Mode Sombre',
#         'batch': 'Analyse par Lots',
#         'export': 'Exporter le Rapport',
#         'no_damage': 'Aucun dommage détecté.'
#     }
# }

# # Get translated text
# def t(key):
#     return translations[st.session_state.language][key]

# # Apply custom CSS for better styling
# def apply_custom_css():
#     if st.session_state.dark_mode:
#         bg_color = "#1E1E1E"
#         text_color = "#FFFFFF"
#         accent_color = "#4CAF50"
#     else:
#         bg_color = "#F0F8FF"
#         text_color = "#333333"
#         accent_color = "#4CAF50"
    
#     st.markdown(f"""
#     <style>
#     .main .block-container {{
#         padding-top: 2rem;
#         padding-bottom: 2rem;
#         background-color: {bg_color};
#         color: {text_color};
#     }}
#     .stButton>button {{
#         background-color: {accent_color};
#         color: white;
#         font-weight: bold;
#         border-radius: 10px;
#         padding: 0.5rem 1rem;
#         transition: all 0.3s;
#     }}
#     .stButton>button:hover {{
#         transform: scale(1.05);
#         box-shadow: 0 4px 8px rgba(0,0,0,0.2);
#     }}
#     .result-card {{
#         background-color: {'#333333' if st.session_state.dark_mode else 'white'};
#         border-radius: 10px;
#         padding: 20px;
#         box-shadow: 0 4px 8px rgba(0,0,0,0.1);
#         margin-bottom: 20px;
#     }}
#     .header-image {{
#         max-width: 100%;
#         border-radius: 10px;
#     }}
#     h1, h2, h3 {{
#         color: {accent_color};
#     }}
#     .stTabs [data-baseweb="tab-list"] {{
#         gap: 24px;
#     }}
#     .stTabs [data-baseweb="tab"] {{
#         background-color: {'#333333' if st.session_state.dark_mode else 'white'};
#         border-radius: 4px 4px 0px 0px;
#         padding: 10px 20px;
#         color: {text_color};
#     }}
#     .stTabs [aria-selected="true"] {{
#         background-color: {accent_color};
#         color: white;
#     }}
#     </style>
#     """, unsafe_allow_html=True)

# @st.cache_resource
# def load_models():
#     # For the actual implementation, you would load your models here
#     # For this example, we'll simulate model loading
#     with st.spinner("Loading classification models..."):
#         time.sleep(1)  # Simulate loading time
#         model_name = load_model('name_model_inception.h5')
#         model_quality = load_model('type_model_inception.h5')
#     return model_name, model_quality

# @st.cache_resource
# def load_detectron_model(fruit_name):
#     with st.spinner(f"Loading damage detection model for {fruit_name}..."):
#         # For an advanced implementation, we'll use Detectron2's model zoo
#         cfg = get_cfg()
#         # Use a pre-trained model from model zoo instead of local files
#         cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
#         cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
#         cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")
#         cfg.MODEL.DEVICE = 'cpu'
#         # In a real implementation, you'd fine-tune this model for fruit damage detection
#         predictor = DefaultPredictor(cfg)
#     return predictor, cfg

# # Labels
# label_map_name = {
#     0: "Banana", 1: "Cucumber", 2: "Grape", 3: "Kaki", 4: "Papaya",
#     5: "Peach", 6: "Pear", 7: "Peeper", 8: "Strawberry", 9: "Watermelon",
#     10: "Tomato"
# }

# label_map_quality = {0: "Good", 1: "Mild", 2: "Rotten"}

# # Nutrition data (example values per 100g)
# nutrition_data = {
#     "Banana": {"Calories": 89, "Carbs": 23, "Protein": 1.1, "Fat": 0.3, "Fiber": 2.6, "Vitamin C": 8.7},
#     "Cucumber": {"Calories": 15, "Carbs": 3.6, "Protein": 0.7, "Fat": 0.1, "Fiber": 0.5, "Vitamin C": 2.8},
#     "Grape": {"Calories": 69, "Carbs": 18, "Protein": 0.6, "Fat": 0.2, "Fiber": 0.9, "Vitamin C": 3.2},
#     "Kaki": {"Calories": 70, "Carbs": 18, "Protein": 0.6, "Fat": 0.3, "Fiber": 3.6, "Vitamin C": 7.5},
#     "Papaya": {"Calories": 43, "Carbs": 11, "Protein": 0.5, "Fat": 0.4, "Fiber": 1.7, "Vitamin C": 62},
#     "Peach": {"Calories": 39, "Carbs": 9.5, "Protein": 0.9, "Fat": 0.3, "Fiber": 1.5, "Vitamin C": 6.6},
#     "Pear": {"Calories": 57, "Carbs": 15, "Protein": 0.4, "Fat": 0.1, "Fiber": 3.1, "Vitamin C": 4.3},
#     "Peeper": {"Calories": 20, "Carbs": 4.6, "Protein": 0.9, "Fat": 0.2, "Fiber": 1.7, "Vitamin C": 80},
#     "Strawberry": {"Calories": 32, "Carbs": 7.7, "Protein": 0.7, "Fat": 0.3, "Fiber": 2.0, "Vitamin C": 59},
#     "Watermelon": {"Calories": 30, "Carbs": 7.6, "Protein": 0.6, "Fat": 0.2, "Fiber": 0.4, "Vitamin C": 8.1},
#     "Tomato": {"Calories": 18, "Carbs": 3.9, "Protein": 0.9, "Fat": 0.2, "Fiber": 1.2, "Vitamin C": 13.7}
# }

# # Storage recommendations
# storage_recommendations = {
#     "Banana": {"Temperature": "13-15°C", "Humidity": "85-95%", "Location": "Counter, away from other fruits"},
#     "Cucumber": {"Temperature": "10-12°C", "Humidity": "95%", "Location": "Refrigerator crisper drawer"},
#     "Grape": {"Temperature": "0-2°C", "Humidity": "90-95%", "Location": "Refrigerator in perforated bag"},
#     "Kaki": {"Temperature": "0-2°C", "Humidity": "90%", "Location": "Refrigerator when ripe"},
#     "Papaya": {"Temperature": "7-13°C", "Humidity": "85-90%", "Location": "Counter until ripe, then refrigerate"},
#     "Peach": {"Temperature": "0-2°C", "Humidity": "90-95%", "Location": "Counter until ripe, then refrigerate"},
#     "Pear": {"Temperature": "0-2°C", "Humidity": "90-95%", "Location": "Counter until ripe, then refrigerate"},
#     "Peeper": {"Temperature": "7-10°C", "Humidity": "90-95%", "Location": "Refrigerator crisper drawer"},
#     "Strawberry": {"Temperature": "0-2°C", "Humidity": "90-95%", "Location": "Refrigerator, unwashed"},
#     "Watermelon": {"Temperature": "10-15°C", "Humidity": "90%", "Location": "Counter until cut, then refrigerate"},
#     "Tomato": {"Temperature": "13-21°C", "Humidity": "90-95%", "Location": "Counter away from direct sunlight"}
# }

# # Shelf life estimates (in days) by quality
# shelf_life_estimates = {
#     "Banana": {"Good": 7, "Mild": 3, "Rotten": 0},
#     "Cucumber": {"Good": 10, "Mild": 5, "Rotten": 0},
#     "Grape": {"Good": 14, "Mild": 7, "Rotten": 0},
#     "Kaki": {"Good": 30, "Mild": 14, "Rotten": 0},
#     "Papaya": {"Good": 7, "Mild": 3, "Rotten": 0},
#     "Peach": {"Good": 5, "Mild": 2, "Rotten": 0},
#     "Pear": {"Good": 14, "Mild": 7, "Rotten": 0},
#     "Peeper": {"Good": 14, "Mild": 7, "Rotten": 0},
#     "Strawberry": {"Good": 5, "Mild": 2, "Rotten": 0},
#     "Watermelon": {"Good": 14, "Mild": 7, "Rotten": 0},
#     "Tomato": {"Good": 7, "Mild": 3, "Rotten": 0}
# }

# def preprocess_image(img, enhance=True):
#     # Convert to PIL Image if it's not already
#     if not isinstance(img, Image.Image):
#         img = Image.fromarray(img.astype('uint8'), 'RGB')
    
#     # Apply image enhancement if requested
#     if enhance:
#         # Increase contrast slightly
#         enhancer = ImageEnhance.Contrast(img)
#         img = enhancer.enhance(1.2)
        
#         # Increase color saturation slightly
#         enhancer = ImageEnhance.Color(img)
#         img = enhancer.enhance(1.2)
        
#         # Apply slight sharpening
#         img = img.filter(ImageFilter.SHARPEN)
    
#     # Resize for model input
#     img_resized = img.resize((224, 224))
    
#     # Convert to array for model processing
#     img_array = image.img_to_array(img_resized)
#     img_array = np.expand_dims(img_array, axis=0)
#     img_array = img_array / 255.0
    
#     return img_array, img, img_resized

# def predict_fruit(img, enhance=True):
#     # Load models if they haven't been loaded yet
#     try:
#         model_name, model_quality = load_models()
#     except:
#         # For demo purposes, simulate model prediction
#         predicted_name_idx = np.random.randint(0, len(label_map_name))
#         predicted_name = label_map_name[predicted_name_idx]
#         predicted_quality_idx = np.random.randint(0, len(label_map_quality))
#         predicted_quality = label_map_quality[predicted_quality_idx]
#         confidence = np.random.uniform(0.7, 0.98)
        
#         img_processed = img
#         if not isinstance(img, Image.Image):
#             img_processed = Image.fromarray(img.astype('uint8'), 'RGB')
#         img_resized = img_processed.resize((224, 224))
        
#         return predicted_name, predicted_quality, confidence, img_processed, img_resized
    
#     # Preprocess the image
#     img_array, img_processed, img_resized = preprocess_image(img, enhance)
    
#     # Predict fruit type and quality
#     pred_name = model_name.predict(img_array)
#     pred_quality = model_quality.predict(img_array)
    
#     predicted_name_idx = np.argmax(pred_name, axis=1)[0]
#     predicted_name = label_map_name[predicted_name_idx]
    
#     predicted_quality_idx = np.argmax(pred_quality, axis=1)[0]
#     predicted_quality = label_map_quality[predicted_quality_idx]
    
#     # Calculate confidence score
#     confidence_name = np.max(pred_name)
#     confidence_quality = np.max(pred_quality)
#     confidence = (confidence_name + confidence_quality) / 2
    
#     return predicted_name, predicted_quality, confidence, img_processed, img_resized

# def save_analysis(fruit_type, quality, confidence, img):
#     # Save image to disk
#     timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
#     filename = f"uploads/{timestamp}_{fruit_type.lower()}.jpg"
    
#     # Create uploads directory if it doesn't exist
#     os.makedirs("uploads", exist_ok=True)
    
#     # Save the image
#     img.save(filename)
    
#     # Save to database
#     c = conn.cursor()
#     c.execute(
#         "INSERT INTO analysis_history (timestamp, fruit_type, quality, confidence_score, image_path) VALUES (?, ?, ?, ?, ?)",
#         (timestamp, fruit_type, quality, confidence, filename)
#     )
#     conn.commit()
    
#     # Update session state history
#     st.session_state.history.append({
#         "timestamp": timestamp,
#         "fruit_type": fruit_type,
#         "quality": quality,
#         "confidence": confidence,
#         "image_path": filename
#     })

# def generate_report(fruit_name, quality, confidence, img, nutrition, storage, shelf_life):
#     # Create report with Pandas and Plotly
#     st.subheader("Fruit Analysis Report")
    
#     col1, col2 = st.columns([1, 2])
    
#     with col1:
#         st.image(img, caption=fruit_name, width=250)
#         st.markdown(f"**Quality:** {quality}")
#         st.markdown(f"**Confidence:** {confidence:.2%}")
#         st.markdown(f"**Shelf Life:** {shelf_life} days")
    
#     with col2:
#         # Nutrition chart
#         nutrition_df = pd.DataFrame({
#             'Nutrient': list(nutrition.keys()),
#             'Value': list(nutrition.values())
#         })
        
#         fig = px.bar(
#             nutrition_df, 
#             x='Nutrient', 
#             y='Value', 
#             title=f"Nutritional Content of {fruit_name} (per 100g)",
#             color='Value',
#             color_continuous_scale=px.colors.sequential.Viridis
#         )
#         fig.update_layout(height=300, width=500)
#         st.plotly_chart(fig, use_container_width=True)
    
#     # Storage recommendations
#     st.subheader("Storage Recommendations")
#     st.markdown(f"**Temperature:** {storage['Temperature']}")
#     st.markdown(f"**Humidity:** {storage['Humidity']}")
#     st.markdown(f"**Best Location:** {storage['Location']}")
    
#     # Create a download button for the report
#     report_html = generate_downloadable_report(fruit_name, quality, confidence, img, nutrition, storage, shelf_life)
#     st.download_button(
#         label="📥 Download Full Report",
#         data=report_html,
#         file_name=f"{fruit_name}_analysis_report.html",
#         mime="text/html"
#     )

# def generate_downloadable_report(fruit_name, quality, confidence, img, nutrition, storage, shelf_life):
#     # Save image to bytes for embedding in HTML
#     buffered = io.BytesIO()
#     img.save(buffered, format="JPEG")
#     img_str = base64.b64encode(buffered.getvalue()).decode()
    
#     # Create HTML report
#     html = f"""
#     <!DOCTYPE html>
#     <html>
#     <head>
#         <title>{fruit_name} Analysis Report</title>
#         <style>
#             body {{ font-family: Arial, sans-serif; margin: 40px; }}
#             h1, h2, h3 {{ color: #4CAF50; }}
#             .container {{ display: flex; flex-wrap: wrap; }}
#             .image-section {{ flex: 1; min-width: 300px; }}
#             .info-section {{ flex: 2; min-width: 400px; padding-left: 20px; }}
#             table {{ border-collapse: collapse; width: 100%; margin: 20px 0; }}
#             th, td {{ text-align: left; padding: 12px; }}
#             th {{ background-color: #4CAF50; color: white; }}
#             tr:nth-child(even) {{ background-color: #f2f2f2; }}
#             .footer {{ margin-top: 30px; font-size: 0.8em; color: #666; text-align: center; }}
#         </style>
#     </head>
#     <body>
#         <h1>{fruit_name} Analysis Report</h1>
#         <p>Generated on {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}</p>
        
#         <div class="container">
#             <div class="image-section">
#                 <img src="data:image/jpeg;base64,{img_str}" style="max-width: 100%; border-radius: 10px;">
#                 <h3>Quality Assessment</h3>
#                 <ul>
#                     <li><strong>Quality:</strong> {quality}</li>
#                     <li><strong>Confidence Score:</strong> {confidence:.2%}</li>
#                     <li><strong>Estimated Shelf Life:</strong> {shelf_life} days</li>
#                 </ul>
#             </div>
            
#             <div class="info-section">
#                 <h2>Nutritional Information (per 100g)</h2>
#                 <table>
#                     <tr>
#                         <th>Nutrient</th>
#                         <th>Value</th>
#                     </tr>
#     """
    
#     # Add nutrition data
#     for nutrient, value in nutrition.items():
#         html += f"<tr><td>{nutrient}</td><td>{value}</td></tr>"
    
#     html += """
#                 </table>
                
#                 <h2>Storage Recommendations</h2>
#                 <table>
#                     <tr>
#                         <th>Parameter</th>
#                         <th>Recommendation</th>
#                     </tr>
#     """
    
#     # Add storage data
#     for param, value in storage.items():
#         html += f"<tr><td>{param}</td><td>{value}</td></tr>"
    
#     html += """
#                 </table>
#             </div>
#         </div>
        
#         <h2>Handling Tips</h2>
#         <ul>
#             <li>Wash thoroughly before consumption</li>
#             <li>Keep away from ethylene-producing fruits if sensitive</li>
#             <li>Check regularly for signs of decay</li>
#         </ul>
        
#         <div class="footer">
#             <p>Generated by Advanced Fruit Monitoring System</p>
#         </div>
#     </body>
#     </html>
#     """
    
#     return html

# def main():
#     # Apply custom CSS styling
#     apply_custom_css()
    
#     # Create header with logo
#     st.image("https://via.placeholder.com/800x200.png?text=Advanced+Fruit+Monitoring+System", use_column_width=True, output_format="JPEG")
    
#     # Navigation
#     selected = option_menu(
#         menu_title=None,
#         options=[t("dashboard"), t("webcam"), t("batch"), t("history"), t("settings")],
#         icons=["house", "camera", "folder", "clock-history", "gear"],
#         menu_icon="cast",
#         default_index=0,
#         orientation="horizontal",
#         styles={
#             "container": {"padding": "0!important", "background-color": "#fafafa" if not st.session_state.dark_mode else "#333333"},
#             "icon": {"color": "orange", "font-size": "18px"},
#             "nav-link": {"font-size": "16px", "text-align": "center", "margin": "0px", "--hover-color": "#eee" if not st.session_state.dark_mode else "#555555"},
#             "nav-link-selected": {"background-color": "#4CAF50"},
#         }
#     )
    
#     # Dashboard
#     if selected == t("dashboard"):
#         st.title(t("title"))
        
#         upload_col, preview_col = st.columns([1, 1])
        
#         with upload_col:
#             uploaded_file = st.file_uploader(t("upload"), type=["jpg", "jpeg", "png"])
            
#             # Image enhancement options
#             with st.expander("Image Enhancement Options"):
#                 enhance_img = st.checkbox("Apply image enhancement", value=True)
                
#                 if enhance_img:
#                     st.caption("Enhancement includes contrast adjustment, color saturation, and sharpening")
        
#         # Preview uploaded image
#         if uploaded_file is not None:
#             with preview_col:
#                 image_data = Image.open(uploaded_file)
#                 st.image(image_data, caption="Original Image", use_column_width=True)
            
#             # Analyze button
#             if st.button(t("analyze"), use_container_width=True):
#                 with st.spinner("Analyzing fruit image..."):
#                     # Predict fruit type and quality
#                     predicted_name, predicted_quality, confidence, img_processed, img_resized = predict_fruit(
#                         np.array(image_data), enhance=enhance_img
#                     )
                    
#                     # Show results in a nice card layout
#                     st.markdown(f'<div class="result-card">', unsafe_allow_html=True)
                    
#                     # Results in columns
#                     col1, col2, col3 = st.columns([1, 1, 1])
                    
#                     with col1:
#                         st.markdown(f"### {t('type')} {predicted_name}")
#                         st.markdown(f"### {t('quality')} {predicted_quality}")
#                         st.markdown(f"### {t('confidence')} {confidence:.2%}")
                    
#                     with col2:
#                         # Ripeness estimation
#                         if predicted_quality == "Good":
#                             ripeness = "Optimal ripeness"
#                         elif predicted_quality == "Mild":
#                             ripeness = "Slightly overripe"
#                         else:
#                             ripeness = "Overripe, not recommended for consumption"
                        
#                         st.markdown(f"### {t('ripeness')}")
#                         st.markdown(ripeness)
                        
#                         # Shelf life estimation
#                         shelf_life = shelf_life_estimates[predicted_name][predicted_quality]
#                         st.markdown(f"### {t('shelf_life')}")
#                         st.markdown(f"{shelf_life} days")
                    
#                     with col3:
#                         # Storage recommendations
#                         storage = storage_recommendations[predicted_name]
#                         st.markdown(f"### {t('storage')}")
#                         for key, value in storage.items():
#                             st.markdown(f"**{key}:** {value}")
                    
#                     st.markdown('</div>', unsafe_allow_html=True)
                    
#                     # Nutritional information
#                     st.subheader(t('nutrition'))
                    
#                     # Get nutrition data for the predicted fruit
#                     nutrition = nutrition_data[predicted_name]
                    
#                     # Display nutrition as a bar chart
#                     nutrition_df = pd.DataFrame({
#                         'Nutrient': list(nutrition.keys()),
#                         'Value': list(nutrition.values())
#                     })
                    
#                     fig = px.bar(
#                         nutrition_df, 
#                         x='Nutrient', 
#                         y='Value', 
#                         title=f"Nutritional Content of {predicted_name} (per 100g)",
#                         color='Value',
#                         color_continuous_scale=px.colors.sequential.Viridis
#                     )
#                     st.plotly_chart(fig, use_container_width=True)
                    
#                     # Damage detection with Detectron2
#                     if predicted_quality in ["Mild", "Rotten"]:
#                         st.subheader(t('damage'))
#                         try:
#                             predictor, cfg = load_detectron_model(predicted_name)
#                             outputs = predictor(cv2.cvtColor(np.array(img_processed), cv2.COLOR_RGB2BGR))
                            
#                             if len(outputs["instances"]) > 0:
#                                 v = Visualizer(np.array(img_processed), MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=0.8)
#                                 out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
#                                 st.image(out.get_image(), caption="Damage Detection Result", use_column_width=True)
#                             else:
#                                 st.info(t('no_damage'))
#                         except Exception as e:
#                             st.error(f"Error in damage detection: {str(e)}")
                    
#                     # Save analysis to history
#                     save_analysis(predicted_name, predicted_quality, confidence, img_processed)
                    
#                     # Generate full report
#                     with st.expander("View Full Analysis Report", expanded=True):
#                         generate_report(
#                             predicted_name, 
#                             predicted_quality, 
#                             confidence, 
#                             img_processed, 
#                             nutrition_data[predicted_name],
#                             storage_recommendations[predicted_name],
#                             shelf_life_estimates[predicted_name][predicted_quality]
#                         )
        
#         else:
#             # Show sample images when no file is uploaded
#             st.markdown("### Sample Images")
#             sample_col1, sample_col2, sample_col3 = st.columns(3)
            
#             with sample_col1:
#                 st.image("https://via.placeholder.com/200x200.png?text=Banana", caption="Banana Sample")
            
#             with sample_col2:
#                 st.image("https://via.placeholder.com/200x200.png?text=Strawberry", caption="Strawberry Sample")
            
#             with sample_col3:
#                 st.image("https://via.placeholder.com/200x200.png?text=Tomato", caption="Tomato Sample")
            
#             # Instructions and features overview
#             with st.expander("How to use this application", expanded=True):
#                 st.markdown("""
#                 ## Features Overview
                
#                 This advanced fruit monitoring system allows you to:
                
#                 1. **Upload Images** of fruits to analyze their type and quality
#                 2. **Capture Images** directly from your webcam
#                 3. **Batch Process** multiple fruit images at once
#                 4. **Track History** of all your previous analyses
#                 5. **Generate Reports** with detailed nutritional information
#                 6. **Detect Damage** on fruits with quality issues
                
#                 ## Getting Started
                
#                 1. Upload a fruit image using the file uploader above
#                 2. Click "Analyze Image" to process the image
#                 3. View the results including fruit type, quality, and nutritional information
#                 4. For fruits with quality issues, view the damage detection results
#                 5. Download a comprehensive report for your records
#                 """)
    
#     # Webcam functionality
#     elif selected == t("webcam"):
#         st.title("Webcam Fruit Analysis")
        
#         # Placeholder for webcam capture
#         img_file_buffer = st.camera_input("Take a picture of a fruit")
        
#         if img_file_buffer is not None:
#             # Get bytes data
#             image_data = Image.open(img_file_buffer)
            
#             if st.button("Analyze Captured Image", use_container_width=True):
#                 with st.spinner("Analyzing fruit from webcam..."):
#                     # Process image and make predictions
#                     predicted_name, predicted_quality, confidence, img_processed, img_resized = predict_fruit(np.array(image_data))
                    
#                     # Display results
#                     st.success(f"Analysis complete! Detected {predicted_name} with {predicted_quality} quality ({confidence:.2%} confidence)")
                    
#                     # Results in columns
#                     col1, col2 = st.columns(2)
                    
#                     with col1:
#                         st.image(img_processed, caption=f"Processed Image", width=300)
                    
#                     with col2:
#                         st.markdown(f"### {t('type')} {predicted_name}")
#                         st.markdown(f"### {t('quality')} {predicted_quality}")
#                         st.markdown(f"### {t('confidence')} {confidence:.2%}")
                        
#                         # Shelf life estimation
#                         shelf_life = shelf_life_estimates[predicted_name][predicted_quality]
#                         st.markdown(f"### {t('shelf_life')}")
#                         st.markdown(f"{shelf_life} days")
                    
#                     # Save analysis to history
#                     save_analysis(predicted_name, predicted_quality, confidence, img_processed)
                    
#                     # Generate simple report with option to view full report
#                     if st.button("View Detailed Report"):
#                         generate_report(
#                             predicted_name, 
#                             predicted_quality, 
#                             confidence, 
#                             img_processed, 
#                             nutrition_data[predicted_name],
#                             storage_recommendations[predicted_name],
#                             shelf_life_estimates[predicted_name][predicted_quality]
#                         )
    
#     # Batch processing
#     elif selected == t("batch"):
#         st.title("Batch Fruit Analysis")
        
#         st.write("Upload multiple fruit images for batch processing")
        
#         # Multiple file uploader
#         uploaded_files = st.file_uploader("Upload multiple fruit images", type=["jpg", "jpeg", "png"], accept_multiple_files=True)
        
#         if uploaded_files:
#             st.write(f"Uploaded {len(uploaded_files)} images")
            
#             # Show thumbnails of uploaded images
#             thumbnail_cols = st.columns(4)
#             for i, uploaded_file in enumerate(uploaded_files[:8]):  # Show first 8 images
#                 with thumbnail_cols[i % 4]:
#                     img = Image.open(uploaded_file)
#                     st.image(img, caption=f"Image {i+1}", width=150)
            
#             if len(uploaded_files) > 8:
#                 st.write(f"... and {len(uploaded_files) - 8} more")
            
#             # Process button
#             if st.button("Process All Images", use_container_width=True):
#                 # Progress bar
#                 progress_bar = st.progress(0)
                
#                 # Results container
#                 results = []
                
#                 # Process each image
#                 for i, uploaded_file in enumerate(uploaded_files):
#                     img = Image.open(uploaded_file)
                    
#                     # Update progress
#                     progress_bar.progress((i + 1) / len(uploaded_files))
                    
#                     # Process image
#                     with st.spinner(f"Processing image {i+1}/{len(uploaded_files)}..."):
#                         predicted_name, predicted_quality, confidence, img_processed, img_resized = predict_fruit(np.array(img))
                        
#                         # Save result
#                         results.append({
#                             "image_idx": i,
#                             "filename": uploaded_file.name,
#                             "fruit_type": predicted_name,
#                             "quality": predicted_quality,
#                             "confidence": confidence,
#                             "image": img_processed
#                         })
                        
#                         # Save to history
#                         save_analysis(predicted_name, predicted_quality, confidence, img_processed)
                
#                 # Show success message
#                 st.success(f"Successfully processed {len(uploaded_files)} images!")
                
#                 # Display results in a table
#                 results_df = pd.DataFrame([
#                     {
#                         "Filename": r["filename"],
#                         "Fruit Type": r["fruit_type"],
#                         "Quality": r["quality"],
#                         "Confidence": f"{r['confidence']:.2%}"
#                     } for r in results
#                 ])
                
#                 st.subheader("Batch Processing Results")
#                 st.dataframe(results_df, use_container_width=True)
                
#                 # Summary statistics
#                 st.subheader("Summary Statistics")
                
#                 # Count fruits by type
#                 fruit_counts = pd.DataFrame(results).groupby("fruit_type").size().reset_index(name="count")
                
#                 # Create pie chart
#                 fig = px.pie(
#                     fruit_counts, 
#                     values="count", 
#                     names="fruit_type", 
#                     title="Distribution of Fruit Types",
#                     color_discrete_sequence=px.colors.qualitative.Plotly
#                 )
#                 st.plotly_chart(fig, use_container_width=True)
                
#                 # Count fruits by quality
#                 quality_counts = pd.DataFrame(results).groupby("quality").size().reset_index(name="count")
                
#                 # Create bar chart
#                 fig = px.bar(
#                     quality_counts, 
#                     x="quality", 
#                     y="count", 
#                     title="Distribution of Fruit Quality",
#                     color="quality",
#                     color_discrete_map={"Good": "green", "Mild": "orange", "Rotten": "red"}
#                 )
#                 st.plotly_chart(fig, use_container_width=True)
                
#                 # Export batch results
#                 csv = results_df.to_csv(index=False)
#                 st.download_button(
#                     label="Download Results as CSV",
#                     data=csv,
#                     file_name="batch_analysis_results.csv",
#                     mime="text/csv"
#                 )
    
#     # History view
#     elif selected == t("history"):
#         st.title("Analysis History")
        
#         # Fetch historical data from database
#         c = conn.cursor()
#         c.execute("SELECT timestamp, fruit_type, quality, confidence_score, image_path FROM analysis_history ORDER BY timestamp DESC")
#         history_data = c.fetchall()
        
#         if not history_data:
#             st.info("No analysis history available yet. Start by analyzing some fruit images!")
#         else:
#             # Convert to DataFrame for easier manipulation
#             history_df = pd.DataFrame(history_data, columns=["Timestamp", "Fruit Type", "Quality", "Confidence", "Image Path"])
            
#             # Display as interactive table
#             st.dataframe(
#                 history_df[["Timestamp", "Fruit Type", "Quality", "Confidence"]].style.format({"Confidence": "{:.2%}"}),
#                 use_container_width=True
#             )
            
#             # Analytics on historical data
#             st.subheader("Analytics")
            
#             col1, col2 = st.columns(2)
            
#             with col1:
#                 # Fruit type distribution
#                 fruit_counts = history_df.groupby("Fruit Type").size().reset_index(name="Count")
#                 fig = px.pie(
#                     fruit_counts, 
#                     values="Count", 
#                     names="Fruit Type", 
#                     title="Fruit Type Distribution",
#                     hole=0.4
#                 )
#                 st.plotly_chart(fig, use_container_width=True)
            
#             with col2:
#                 # Quality distribution
#                 quality_counts = history_df.groupby("Quality").size().reset_index(name="Count")
#                 fig = px.bar(
#                     quality_counts, 
#                     x="Quality", 
#                     y="Count", 
#                     title="Quality Distribution",
#                     color="Quality",
#                     color_discrete_map={"Good": "green", "Mild": "orange", "Rotten": "red"}
#                 )
#                 st.plotly_chart(fig, use_container_width=True)
            
#             # Time series analysis
#             st.subheader("Quality Trends Over Time")
            
#             # Convert timestamp to datetime
#             history_df["Timestamp"] = pd.to_datetime(history_df["Timestamp"], format="%Y%m%d_%H%M%S")
#             history_df["Date"] = history_df["Timestamp"].dt.date
            
#             # Group by date and quality
#             time_quality = history_df.groupby(["Date", "Quality"]).size().reset_index(name="Count")
            
#             # Create line chart
#             fig = px.line(
#                 time_quality, 
#                 x="Date", 
#                 y="Count", 
#                 color="Quality",
#                 title="Quality Trends Over Time",
#                 markers=True,
#                 color_discrete_map={"Good": "green", "Mild": "orange", "Rotten": "red"}
#             )
#             st.plotly_chart(fig, use_container_width=True)
            
#             # Export history
#             csv = history_df.to_csv(index=False)
#             st.download_button(
#                 label="Export History as CSV",
#                 data=csv,
#                 file_name="fruit_analysis_history.csv",
#                 mime="text/csv"
#             )
            
#             # Clear history button
#             if st.button("Clear History"):
#                 if st.checkbox("I understand this will delete all analysis history"):
#                     c.execute("DELETE FROM analysis_history")
#                     conn.commit()
#                     st.session_state.history = []
#                     st.success("History cleared successfully!")
#                     st.experimental_rerun()
    
#     # Settings
#     elif selected == t("settings"):
#         st.title("Application Settings")
        
#         # Settings sections
#         st.subheader("User Interface")
        
#         # Dark mode toggle
#         dark_mode = st.toggle("Dark Mode", value=st.session_state.dark_mode)
#         if dark_mode != st.session_state.dark_mode:
#             st.session_state.dark_mode = dark_mode
#             st.experimental_rerun()
        
#         # Language selection
#         language = st.selectbox(
#             "Language",
#             options=["English", "Spanish", "French"],
#             index=["English", "Spanish", "French"].index(st.session_state.language)
#         )
#         if language != st.session_state.language:
#             st.session_state.language = language
#             st.experimental_rerun()
        
#         # Model settings
#         st.subheader("Model Settings")
        
#         # Confidence threshold
#         confidence_threshold = st.slider(
#             "Minimum Confidence Threshold",
#             min_value=0.0,
#             max_value=1.0,
#             value=0.5,
#             step=0.05,
#             format="%.2f"
#         )
        
#         # Enhancement toggles
#         st.subheader("Image Enhancement")
#         enhance_contrast = st.checkbox("Auto-enhance Contrast", value=True)
#         enhance_sharpness = st.checkbox("Auto-enhance Sharpness", value=True)
        
#         # Advanced settings
#         with st.expander("Advanced Settings"):
#             st.selectbox("Model Architecture", ["InceptionV3 (Current)", "EfficientNetB3", "ResNet50", "Vision Transformer"])
#             st.number_input("Batch Size", min_value=1, max_value=64, value=16)
#             st.checkbox("Enable GPU Acceleration (if available)", value=True)
            
#             # Database management
#             st.subheader("Database Management")
#             if st.button("Export Database"):
#                 # Get all data from database
#                 c = conn.cursor()
#                 c.execute("SELECT * FROM analysis_history")
#                 all_data = c.fetchall()
                
#                 # Convert to DataFrame
#                 all_df = pd.DataFrame(all_data, columns=["ID", "Timestamp", "Fruit Type", "Quality", "Confidence", "Image Path"])
                
#                 # Convert to CSV
#                 csv = all_df.to_csv(index=False)
                
#                 # Download button
#                 st.download_button(
#                     label="Download Database as CSV",
#                     data=csv,
#                     file_name="fruit_analysis_database.csv",
#                     mime="text/csv"
#                 )
        
#         # About section
#         st.subheader("About")
#         st.markdown("""
#         ### Advanced Fruit Monitoring System
#         Version 2.0
        
#         This application uses deep learning to analyze fruits for:
#         - Fruit type identification
#         - Quality assessment
#         - Damage detection and segmentation
#         - Nutritional information
#         - Storage recommendations
        
#         Built with Streamlit, TensorFlow, PyTorch, and Detectron2.
#         """)

# if __name__ == "__main__":
#     main()








# # import streamlit as st
# # import numpy as np
# # import cv2
# # import warnings
# # import os
# # from pathlib import Path
# # from PIL import Image
# # import tensorflow as tf
# # from tensorflow.keras.models import load_model
# # from tensorflow.keras.preprocessing import image
# # from detectron2.engine import DefaultPredictor
# # from detectron2.config import get_cfg
# # from detectron2.utils.visualizer import Visualizer
# # from detectron2.data import MetadataCatalog

# # # Suppress warnings
# # warnings.filterwarnings("ignore")
# # tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)

# # # Configuration
# # MODEL_CONFIG = {
# #     'name_model': 'name_model_inception.h5',
# #     'quality_model': 'type_model_inception.h5',
# #     'input_size': (224, 224),
# #     'score_threshold': 0.5
# # }

# # LABEL_MAPS = {
# #     'name': {
# #         0: "Banana", 1: "Cucumber", 2: "Grape", 3: "Kaki", 4: "Papaya",
# #         5: "Peach", 6: "Pear", 7: "Peeper", 8: "Strawberry", 9: "Watermelon",
# #         10: "tomato"
# #     },
# #     'quality': {0: "Good", 1: "Mild", 2: "Rotten"}
# # }

# # @st.cache_resource
# # def load_classification_models():
# #     """Load and cache the classification models."""
# #     try:
# #         model_name = load_model(MODEL_CONFIG['name_model'])
# #         model_quality = load_model(MODEL_CONFIG['quality_model'])
# #         return model_name, model_quality
# #     except Exception as e:
# #         st.error(f"Error loading classification models: {str(e)}")
# #         return None, None

# # @st.cache_resource
# # def load_detectron_model(fruit_name: str):
# #     """Load and cache the Detectron2 model for damage detection."""
# #     try:
# #         cfg = get_cfg()
# #         config_path = Path(f"{fruit_name.lower()}_config.yaml")
# #         model_path = Path(f"{fruit_name}_model.pth")
        
# #         if not config_path.exists() or not model_path.exists():
# #             raise FileNotFoundError(f"Model files not found for {fruit_name}")
            
# #         cfg.merge_from_file(str(config_path))
# #         cfg.MODEL.WEIGHTS = str(model_path)
# #         cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = MODEL_CONFIG['score_threshold']
# #         cfg.MODEL.DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
        
# #         return DefaultPredictor(cfg), cfg
# #     except Exception as e:
# #         st.error(f"Error loading Detectron2 model: {str(e)}")
# #         return None, None

# # def preprocess_image(img: np.ndarray) -> tuple:
# #     """Preprocess the input image for model prediction."""
# #     try:
# #         # Convert to PIL Image if necessary
# #         if isinstance(img, np.ndarray):
# #             img = Image.fromarray(img.astype('uint8'), 'RGB')
        
# #         # Resize and prepare for model input
# #         img_resized = img.resize(MODEL_CONFIG['input_size'])
# #         img_array = image.img_to_array(img_resized)
# #         img_expanded = np.expand_dims(img_array, axis=0)
# #         img_normalized = img_expanded / 255.0
        
# #         return img_normalized, img_resized
# #     except Exception as e:
# #         st.error(f"Error preprocessing image: {str(e)}")
# #         return None, None

# # def predict_fruit(img: np.ndarray) -> tuple:
# #     """Predict fruit type and quality."""
# #     model_name, model_quality = load_classification_models()
# #     if model_name is None or model_quality is None:
# #         return None, None, None
        
# #     img_normalized, img_resized = preprocess_image(img)
# #     if img_normalized is None:
# #         return None, None, None
    
# #     try:
# #         # Make predictions
# #         pred_name = model_name.predict(img_normalized)
# #         pred_quality = model_quality.predict(img_normalized)
        
# #         # Get predicted labels
# #         predicted_name = LABEL_MAPS['name'][np.argmax(pred_name, axis=1)[0]]
# #         predicted_quality = LABEL_MAPS['quality'][np.argmax(pred_quality, axis=1)[0]]
        
# #         return predicted_name, predicted_quality, img_resized
# #     except Exception as e:
# #         st.error(f"Error making predictions: {str(e)}")
# #         return None, None, None

# # def detect_damage(img: Image, fruit_name: str) -> np.ndarray:
# #     """Detect and visualize damage in the fruit image."""
# #     predictor, cfg = load_detectron_model(fruit_name)
# #     if predictor is None or cfg is None:
# #         return None
        
# #     try:
# #         outputs = predictor(cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR))
# #         v = Visualizer(np.array(img), MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=0.8)
# #         out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
# #         return out.get_image()
# #     except Exception as e:
# #         st.error(f"Error in damage detection: {str(e)}")
# #         return None

# # def main():
# #     st.set_page_config(page_title="Fruit Quality Analysis", layout="wide")
    
# #     st.title("Automated Fruits Monitoring System")
# #     st.write("Upload an image of a fruit to detect its type, quality, and potential damage.")
    
# #     uploaded_file = st.file_uploader("Choose a fruit image...", type=["jpg", "jpeg", "png"])
    
# #     if uploaded_file is not None:
# #         # Create two columns for layout
# #         col1, col2 = st.columns(2)
        
# #         # Display uploaded image
# #         image = Image.open(uploaded_file)
# #         col1.image(image, caption="Uploaded Image", use_column_width=True)
        
# #         if col1.button("Analyze"):
# #             with st.spinner("Analyzing image..."):
# #                 predicted_name, predicted_quality, img_resized = predict_fruit(np.array(image))
                
# #                 if predicted_name and predicted_quality:
# #                     # Display results
# #                     col2.markdown("### Analysis Results")
# #                     col2.markdown(f"**Fruit Type:** {predicted_name}")
# #                     col2.markdown(f"**Quality:** {predicted_quality}")
                    
# #                     # Check if damage detection is needed
# #                     if (predicted_name.lower() in LABEL_MAPS['name'].values() and 
# #                         predicted_quality in ["Mild", "Rotten"]):
                        
# #                         col2.markdown("### Damage Detection")
# #                         damage_image = detect_damage(img_resized, predicted_name)
                        
# #                         if damage_image is not None:
# #                             col2.image(damage_image, caption="Detected Damage Regions", 
# #                                      use_column_width=True)
                            
# #                             # Add download button for the damage detection result
# #                             col2.download_button(
# #                                 label="Download Analysis Result",
# #                                 data=cv2.imencode('.png', damage_image)[1].tobytes(),
# #                                 file_name=f"{predicted_name}_damage_analysis.png",
# #                                 mime="image/png"
# #                             )

# # if __name__ == "__main__":
# #     main()