GUI-Actor / gui_actor /dataset.py
johnbridges's picture
.
9f57ecf
raw
history blame
23.5 kB
import copy
import json
import math
import os
import random
import re
import ast
from typing import Dict
import torch
import transformers
import yaml
from qwen_vl_utils import smart_resize, process_vision_info
from torch.utils.data import Dataset
from gui_actor.constants import (
IGNORE_INDEX,
DEFAULT_IMAGE_TOKEN,
DEFAULT_POINTER_START_TOKEN,
DEFAULT_POINTER_PAD_TOKEN,
DEFAULT_POINTER_END_TOKEN,
ACTION_PATTENS_XY,
ADDITIONAL_SPECIAL_TOKENS,
assistant_template,
chat_template,
grounding_system_message,
)
from gui_actor.trainer import rank0_print
def reformat_coordinates(text):
"""
(1) Find all the coordinates in the text.
(2) Replace the coordinates with the special tokens.
(3) Return the new text and the coordinates as a list of (x, y), where x in [0, 1] and y in [0, 1].
"""
epsilon = 0.001
def adjust_coord(c):
"""
Adjust coordinate if it is too close to 0 or 1.
"""
if abs(c) < epsilon:
return epsilon
elif abs(c - 1) < epsilon:
return 1 - epsilon
return c
all_matches = []
for pattern in ACTION_PATTENS_XY:
matches = list(re.finditer(pattern, text))
for match in matches:
all_matches.append((match.start(), match.groups()))
if pattern == ACTION_PATTENS_XY[0]:
target_text = f"{DEFAULT_POINTER_START_TOKEN}{DEFAULT_POINTER_PAD_TOKEN}{DEFAULT_POINTER_END_TOKEN}"
else:
target_text = f"{DEFAULT_POINTER_START_TOKEN}{DEFAULT_POINTER_PAD_TOKEN}{DEFAULT_POINTER_END_TOKEN}, {DEFAULT_POINTER_START_TOKEN}{DEFAULT_POINTER_PAD_TOKEN}{DEFAULT_POINTER_END_TOKEN}"
text = re.sub(
pattern,
target_text,
text
)
coordinates = []
all_matches.sort(key=lambda x: x[0])
# Extract coordinates in order
for _, groups in all_matches:
# When two coordinate values are found, parse them as one (x, y) pair.
if len(groups) == 2:
x_str, y_str = groups
x = adjust_coord(ast.literal_eval(x_str))
y = adjust_coord(ast.literal_eval(y_str))
coordinates.append((x, y))
# When four coordinate values are found, parse them as two pairs.
elif len(groups) == 4:
x1_str, y1_str, x2_str, y2_str = groups
x1 = adjust_coord(ast.literal_eval(x1_str))
y1 = adjust_coord(ast.literal_eval(y1_str))
x2 = adjust_coord(ast.literal_eval(x2_str))
y2 = adjust_coord(ast.literal_eval(y2_str))
coordinates.append((x1, y1))
coordinates.append((x2, y2))
return text, coordinates
def get_token_index(image_processor, image, point_x, point_y):
"""
Get the index of the visual token that contains the point (x, y).
Args:
image_processor: the image processor
image: the image in PIL format
point_x: the x coordinate of the point, in [0, 1].
point_y: the y coordinate of the point, in [0, 1].
"""
if len(image) != 1:
raise ValueError(f"Expected 1 image, got {len(image)}")
# get the original image size and the resized image size
image = image[0]
w, h = image.size
px, py = w * point_x, h * point_y
# rank0_print(f"px: {px}, py: {py}")
# get the token index
merge_patch_size = image_processor.patch_size * image_processor.merge_size
x_index = math.floor(px / merge_patch_size)
y_index = math.floor(py / merge_patch_size)
visual_token_index = y_index * (w // merge_patch_size) + x_index
# merge all above print into one line
return visual_token_index
def get_multi_patch_labels(image_processor, image, bbox_gt):
"""
Get the multi-patch labels for the bounding box.
Args:
image_processor: the image processor
image: the image in PIL format
bbox_gt: the bounding box in the format of (x_min, y_min, x_max, y_max) [0,1]
"""
if len(image) != 1:
raise ValueError(f"Expected 1 image, got {len(image)}")
# Get the original image size and the resized image size
image = image[0]
w, h = image.size
bbox_gt = [bbox_gt[0]*w, bbox_gt[1]*h, bbox_gt[2]*w, bbox_gt[3]*h]
# Extract bounding box coordinates
x_min, y_min, x_max, y_max = bbox_gt
x_min = max(0, x_min)
y_min = max(0, y_min)
x_max = min(w, x_max)
y_max = min(h, y_max)
merge_patch_size = image_processor.patch_size * image_processor.merge_size
assert w % merge_patch_size == 0 and h % merge_patch_size == 0, f"Image size {w}x{h} is not divisible by merge_patch_size {merge_patch_size}"
grid_h, grid_w = h // merge_patch_size, w // merge_patch_size
binary_mask = torch.zeros(grid_h * grid_w)
# Iterate through all patches, check if they overlap with the bounding box
for y_idx in range(grid_h):
for x_idx in range(grid_w):
# Calculate patch boundaries
patch_x_min = x_idx * merge_patch_size
patch_y_min = y_idx * merge_patch_size
patch_x_max = patch_x_min + merge_patch_size
patch_y_max = patch_y_min + merge_patch_size
# Check if patch overlaps with the bounding box
if not (patch_x_max <= x_min or patch_x_min >= x_max or
patch_y_max <= y_min or patch_y_min >= y_max):
# Calculate patch index in the flattened grid
patch_idx = y_idx * grid_w + x_idx
binary_mask[patch_idx] = 1
return binary_mask
def token_index_to_coordinates(image_processor, visual_token_index, image_width, image_height):
merge_patch_size = image_processor.patch_size * image_processor.merge_size
x_index = visual_token_index % (image_width // merge_patch_size)
y_index = visual_token_index // (image_width // merge_patch_size)
px = x_index * merge_patch_size + merge_patch_size / 2
py = y_index * merge_patch_size + merge_patch_size / 2
return px, py
class LazySupervisedDataset(Dataset):
def __init__(
self,
tokenizer: transformers.PreTrainedTokenizer,
processor: transformers.ProcessorMixin,
data_path: str,
data_args,
):
super().__init__()
self.tokenizer = tokenizer
self.processor = processor
self.list_data_dict = []
self.list_image_path = []
self.pointer_pad_token_id = tokenizer.encode(DEFAULT_POINTER_PAD_TOKEN)[0]
self.pointer_start_token_id = tokenizer.encode(DEFAULT_POINTER_START_TOKEN)[0]
self.pointer_end_token_id = tokenizer.encode(DEFAULT_POINTER_END_TOKEN)[0]
# Handle multiple JSON files specified in the data_path
if "{" in data_path and "}" in data_path:
base_path, file_pattern = re.match(r"^(.*)\{(.*)\}\.json$", data_path).groups()
file_names = file_pattern.split(",")
rank0_print(f"Loading {file_names} from {base_path}")
data_args.dataset_paths = []
for file_name in file_names:
data_args.dataset_paths.append(f"{base_path}{file_name}.json")
full_path = f"{base_path}{file_name}.json"
rank0_print(f"Loading {full_path}")
with open(full_path) as file:
cur_data_dict = json.load(file)
rank0_print(f"Loaded {len(cur_data_dict)} samples from {full_path}")
self.list_data_dict.extend(cur_data_dict)
elif data_path.endswith(".yaml"):
with open(data_path) as file:
yaml_data = yaml.safe_load(file)
datasets = yaml_data.get("datasets")
# file should be in the format of:
# datasets:
# - json_path: xxxx1.json
# sampling_strategy: first:1000
# - json_path: xxxx2.json
# sampling_strategy: end:3000
# - json_path: xxxx3.json
# sampling_strategy: random:999
data_args.dataset_paths = [dataset.get("json_path") for dataset in datasets]
for dataset in datasets:
json_path = dataset.get("json_path")
sampling_strategy = dataset.get("sampling_strategy", "all")
images_folder = dataset.get("images_folder")
sampling_number = None
rank0_print(f"Loading {json_path} with {sampling_strategy} sampling strategy")
if json_path.endswith(".jsonl"):
cur_data_dict = []
with open(json_path) as json_file:
for line in json_file:
cur_data_dict.append(json.loads(line.strip()))
elif json_path.endswith(".json"):
# NOTE: we only use json_path with .json now
# Handle the images_folder in yaml
with open(json_path) as json_file:
cur_data_dict = json.load(json_file)
else:
raise ValueError(f"Unsupported file type: {json_path}")
if ":" in sampling_strategy:
sampling_strategy, sampling_number = sampling_strategy.split(":")
if "%" in sampling_number:
sampling_number = math.ceil(int(sampling_number.split("%")[0]) * len(cur_data_dict) / 100)
else:
sampling_number = int(sampling_number)
# Apply the sampling strategy
if sampling_strategy == "first" and sampling_number is not None:
cur_data_dict = cur_data_dict[:sampling_number]
elif sampling_strategy == "end" and sampling_number is not None:
cur_data_dict = cur_data_dict[-sampling_number:]
elif sampling_strategy == "random" and sampling_number is not None:
random.shuffle(cur_data_dict)
cur_data_dict = cur_data_dict[:sampling_number]
rank0_print(f"Loaded {len(cur_data_dict)} samples from {json_path}")
self.list_data_dict.extend(cur_data_dict)
self.list_image_path.extend([images_folder] * len(cur_data_dict))
else:
data_args.dataset_paths = [data_path]
rank0_print(f"Loading {data_path}")
with open(data_path) as file:
cur_data_dict = json.load(file)
rank0_print(f"Loaded {len(cur_data_dict)} samples from {data_path}")
self.list_data_dict.extend(cur_data_dict)
self.list_image_path.extend([""] * len(cur_data_dict)) # NOTE: the image subfolder is empty...
rank0_print(f"Loaded {len(self.list_data_dict)} samples from {data_path}")
rank0_print("Formatting inputs...Skip in lazy mode")
self.tokenizer = tokenizer
self.data_args = data_args
def __len__(self):
return len(self.list_data_dict)
@property
def lengths(self):
length_list = []
for sample in self.list_data_dict:
img_tokens = (
1200 * len(sample["image"]) if isinstance(sample["image"], list) else 1200 if "image" in sample else 0
)
length_list.append(sum(len(conv["value"].split()) for conv in sample["conversations"]) + img_tokens)
return length_list
@property
def modality_lengths(self):
length_list = []
for sample in self.list_data_dict:
cur_len = sum(len(conv["value"].split()) for conv in sample["conversations"])
assert cur_len > 0, f"Conversation length is 0 for {sample}"
img_tokens = (
1200 * len(sample["image"]) if isinstance(sample["image"], list) else 1200 if "image" in sample else 0
)
if "image" in sample or "video" in sample or self.data_args.early_mix_text:
length_list.append(cur_len + img_tokens)
else:
length_list.append(-cur_len)
return length_list
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
sample = self._get_item(i)
if sample is None:
new_index = random.randint(0, len(self.list_data_dict) - 1)
return self.__getitem__(new_index)
else:
return sample
try:
sample = self._get_item(i)
if sample is None:
new_index = random.randint(0, len(self.list_data_dict) - 1)
return self.__getitem__(new_index)
except Exception as e:
print(f"Failed to fetch sample {i}. Exception:", e)
new_index = random.randint(0, len(self.list_data_dict) - 1)
return self.__getitem__(new_index)
return sample
def _get_item(self, i) -> Dict[str, torch.Tensor]:
sources = self.list_data_dict[i]
image_path = os.path.join(self.data_args.image_folder, self.list_image_path[i])
if "image" in sources:
image_file = self.list_data_dict[i]["image"]
if type(image_file) is list:
image_list = [os.path.join(image_path, image_file) for image_file in image_file]
else:
image_list = [os.path.join(image_path, image_file)]
sources = copy.deepcopy(sources["conversations"])
elif "video" in sources:
raise NotImplementedError("Video is not supported for Qwen2VL")
else:
sources = copy.deepcopy(sources["conversations"])
item_id = self.list_data_dict[i].get("id", i)
data_dict = self.preprocess_qwen2vl(sources, self.tokenizer, self.processor, image_list, id=item_id)
if isinstance(i, int):
data_dict = {
"input_ids": data_dict["input_ids"][0],
"labels": data_dict["labels"][0],
"coordinates": data_dict["coordinates"][0],
"visual_token_indices_of_coordinates": data_dict["visual_token_indices_of_coordinates"][0],
"pixel_values": data_dict["pixel_values"],
"image_grid_thw": data_dict["image_grid_thw"],
"multi_patch_labels": data_dict["multi_patch_labels"][0], # add multi_patch_labels
}
data_dict["id"] = item_id
# return None if the input_ids is longer than the model_max_length
n_image_tokens = (
data_dict["image_grid_thw"][0][0] *
data_dict["image_grid_thw"][0][1] *
data_dict["image_grid_thw"][0][2] /
self.processor.image_processor.merge_size /
self.processor.image_processor.merge_size
)
if (len(data_dict["input_ids"]) + n_image_tokens) > self.tokenizer.model_max_length:
rank0_print(f"=== Removed data_dict {i} because it is longer than the model_max_length: {len(data_dict['input_ids'])} + {n_image_tokens} > {self.tokenizer.model_max_length}")
return None
return data_dict
def preprocess_qwen2vl(
self,
source, # conversations
tokenizer: transformers.PreTrainedTokenizer,
processor: transformers.ProcessorMixin,
image: list,
system_message: str = grounding_system_message,
agent_mode: bool = True,
chat_template: str = chat_template,
assistant_template: str = assistant_template,
id: int = None,
) -> Dict:
roles = {"human": "user", "gpt": "assistant", "system": "system"}
assistant_template = assistant_template if agent_mode else chat_template
processor.tokenizer = tokenizer
assert tokenizer.additional_special_tokens == ADDITIONAL_SPECIAL_TOKENS
# Apply prompt templates
pixel_values, image_grid_thw = None, None
input_id, target = [], []
coordinates = []
visual_token_indices_of_coordinates = []
multi_patch_labels = []
image_list = []
image_index = 0
## prepare the system message
if roles[source[0]["from"]] == "system":
system_message = source[0]["value"]
source = source[1:self.data_args.max_conv_turns]
# else: use the constant system message
system_input_id = tokenizer.apply_chat_template(
conversation=[{"role": "system", "content": [{"type": "text", "text": system_message}]}],
chat_template=chat_template,
)
input_id += system_input_id
target += [IGNORE_INDEX] * len(system_input_id)
## prepare user-assistant conversation
for conv in source:
# regularize the conversation format
try:
role = conv["role"]
content = conv["content"]
except Exception:
role = conv["from"]
content = conv["value"]
role = roles.get(role, role)
# Count the number of <image> tokens in the content
image_count = content.count(DEFAULT_IMAGE_TOKEN)
if image_count > 0:
assert role == "user", "Images are only supported for user messages"
# include image information regarding to current conversation turn
image_placeholders = []
for _ in range(image_count):
image_placeholders.append({
"type": "image",
"image": image[image_index],
"min_pixels": self.processor.image_processor.min_pixels,
"max_pixels": self.processor.image_processor.max_pixels,
})
image_index += 1
content = content.replace(DEFAULT_IMAGE_TOKEN, "")
conv = {"role": role, "content": image_placeholders + [{"type": "text", "text": content}]}
image_inputs, _ = process_vision_info([conv]) # list of PIL.Image.Image
image_list.extend(image_inputs)
templated_conv = tokenizer.apply_chat_template(
conversation=[conv], chat_template=chat_template, tokenize=False
)
inputs = processor(text=[templated_conv], images=image_inputs, return_tensors="pt")
if pixel_values is None and image_grid_thw is None:
pixel_values = inputs["pixel_values"]
image_grid_thw = inputs["image_grid_thw"]
else:
pixel_values = torch.concat([pixel_values, inputs["pixel_values"]], dim=0)
image_grid_thw = torch.concat([image_grid_thw, inputs["image_grid_thw"]], dim=0)
else:
if role in ["user", "system"]:
conv = {"role": role, "content": [{"type": "text", "text": content}]}
else: # assistant
conv = {
"role": role,
"content": [{"type": "text", "text": content}],
"recipient": conv.get("recipient", "os"),
"end_turn": conv.get("end_turn", True),
"bbox_gt": conv.get("bbox_gt", None),
}
if conv["recipient"] == "os":
if len(image_inputs) == 0:
raise ValueError("No image found for visual grounding")
# replace the coordinates with the special tokens
text, coord = reformat_coordinates(conv["content"][0]["text"])
conv["content"][0]["text"] = text
# rank0_print(f"coord: {coord}")
# get the visual token indices of the coordinates
coordinates.extend(coord)
for (point_x, point_y) in coord:
visual_token_index = get_token_index(
processor.image_processor,
image_list,
point_x,
point_y
)
# px, py = token_index_to_coordinates(
# processor.image_processor,
# visual_token_index,
# image_list[0].size[0], # make sure the size here is after qwen2vl processing
# image_list[0].size[1]
# )
# rank0_print(f"estimated px: {px}, py: {py}")
visual_token_indices_of_coordinates.append(visual_token_index)
if conv["bbox_gt"] is not None:
patch_mask = get_multi_patch_labels(
processor.image_processor,
image_list,
conv["bbox_gt"]
)
multi_patch_labels.append(patch_mask)
templated_conv = tokenizer.apply_chat_template(
conversation=[conv],
chat_template=assistant_template,
tokenize=False,
)
inputs = processor(text=[templated_conv], return_tensors="pt")
encode_id = inputs.input_ids[0].tolist()
input_id += encode_id
if role in ["user", "system"]:
target += [IGNORE_INDEX] * len(encode_id)
else:
target += encode_id
assert len(input_id) == len(target), f"{len(input_id)} != {len(target)}"
# make the labels of all pointer_end_token_id to be IGNORE_INDEX
target = [IGNORE_INDEX if token == self.pointer_end_token_id else token for token in target]
input_ids = torch.tensor([input_id], dtype=torch.long)
targets = torch.tensor([target], dtype=torch.long)
visual_token_indices_of_coordinates = torch.tensor([visual_token_indices_of_coordinates], dtype=torch.long) if len(visual_token_indices_of_coordinates) > 0 else [None]
coordinates = [coordinates] if len(coordinates) > 0 else [None]
# process multi_patch_labels
if len(multi_patch_labels) > 0:
multi_patch_labels = [torch.stack(multi_patch_labels)]
else:
multi_patch_labels = [None]
data_dict = {
"input_ids": input_ids, # tensor(bs x seq_len)
"labels": targets, # tensor(bs x seq_len)
}
if pixel_values is not None:
data_dict["pixel_values"] = pixel_values
data_dict["image_grid_thw"] = image_grid_thw
# if len(coordinates[0]) != len(visual_token_indices_of_coordinates[0]):
# raise ValueError(f"The number of coordinates ({len(coordinates[0])}) does not match the number of image token indices ({len(visual_token_indices_of_coordinates[0])})")
data_dict["coordinates"] = coordinates
data_dict["visual_token_indices_of_coordinates"] = visual_token_indices_of_coordinates
data_dict["multi_patch_labels"] = multi_patch_labels
return data_dict