GUI-Actor / app.py
johnbridges's picture
.
9f57ecf
raw
history blame
7.22 kB
import base64, os
# import spaces
import json
import torch
import gradio as gr
from typing import Optional
from PIL import Image, ImageDraw
import numpy as np
import matplotlib.pyplot as plt
from qwen_vl_utils import process_vision_info
from datasets import load_dataset
from transformers import AutoProcessor
from gui_actor.constants import chat_template
from gui_actor.modeling_qwen25vl import Qwen2_5_VLForConditionalGenerationWithPointer
from gui_actor.inference import inference
MAX_PIXELS = 3200 * 1800
def resize_image(image, resize_to_pixels=MAX_PIXELS):
image_width, image_height = image.size
if (resize_to_pixels is not None) and ((image_width * image_height) != resize_to_pixels):
resize_ratio = (resize_to_pixels / (image_width * image_height)) ** 0.5
image_width_resized, image_height_resized = int(image_width * resize_ratio), int(image_height * resize_ratio)
image = image.resize((image_width_resized, image_height_resized))
return image
# @spaces.GPU
@torch.inference_mode()
def draw_point(image: Image.Image, point: list, radius=8, color=(255, 0, 0, 128)):
overlay = Image.new('RGBA', image.size, (255, 255, 255, 0))
overlay_draw = ImageDraw.Draw(overlay)
x, y = point
overlay_draw.ellipse(
[(x - radius, y - radius), (x + radius, y + radius)],
outline=color,
width=5 # Adjust thickness as needed
)
image = image.convert('RGBA')
combined = Image.alpha_composite(image, overlay)
combined = combined.convert('RGB')
return combined
# @spaces.GPU
@torch.inference_mode()
def get_attn_map(image, attn_scores, n_width, n_height):
w, h = image.size
scores = np.array(attn_scores[0]).reshape(n_height, n_width)
scores_norm = (scores - scores.min()) / (scores.max() - scores.min())
# Resize score map to match image size
score_map = Image.fromarray((scores_norm * 255).astype(np.uint8)).resize((w, h), resample=Image.NEAREST) # BILINEAR)
# Apply colormap
colormap = plt.get_cmap('jet')
colored_score_map = colormap(np.array(score_map) / 255.0) # returns RGBA
colored_score_map = (colored_score_map[:, :, :3] * 255).astype(np.uint8)
colored_overlay = Image.fromarray(colored_score_map)
# Blend with original image
blended = Image.blend(image, colored_overlay, alpha=0.3)
return blended
# load model
if torch.cuda.is_available():
# os.system('pip install flash-attn --no-build-isolation')
model_name_or_path = "microsoft/GUI-Actor-7B-Qwen2.5-VL"
data_processor = AutoProcessor.from_pretrained(model_name_or_path)
tokenizer = data_processor.tokenizer
model = Qwen2_5_VLForConditionalGenerationWithPointer.from_pretrained(
model_name_or_path,
torch_dtype=torch.bfloat16,
device_map="cuda:0",
attn_implementation="flash_attention_2"
).eval()
else:
model_name_or_path = "microsoft/GUI-Actor-3B-Qwen2.5-VL"
data_processor = AutoProcessor.from_pretrained(model_name_or_path)
tokenizer = data_processor.tokenizer
model = Qwen2_5_VLForConditionalGenerationWithPointer.from_pretrained(
model_name_or_path,
torch_dtype=torch.bfloat16,
device_map="cpu"
).eval()
title = "GUI-Actor"
header = """
<div align="center">
<h1 style="padding-bottom: 10px; padding-top: 10px;">🎯 <strong>GUI-Actor</strong>: Coordinate-Free Visual Grounding for GUI Agents</h1>
<div style="padding-bottom: 10px; padding-top: 10px; font-size: 16px;">
Qianhui Wu*, Kanzhi Cheng*, Rui Yang*, Chaoyun Zhang, Jianwei Yang, Huiqiang Jiang, Jian Mu, Baolin Peng, Bo Qiao, Reuben Tan, Si Qin, Lars Liden<br>
Qingwei Lin, Huan Zhang, Tong Zhang, Jianbing Zhang, Dongmei Zhang, Jianfeng Gao<br/>
</div>
<div style="padding-bottom: 10px; padding-top: 10px; font-size: 16px;">
<a href="https://microsoft.github.io/GUI-Actor/">🌐 Project Page</a> | <a href="https://arxiv.org/abs/2403.12968">πŸ“„ arXiv Paper</a> | <a href="https://github.com/microsoft/GUI-Actor">πŸ’» Github Repo</a><br/>
</div>
</div>
"""
theme = "soft"
css = """#anno-img .mask {opacity: 0.5; transition: all 0.2s ease-in-out;}
#anno-img .mask.active {opacity: 0.7}"""
# @spaces.GPU
@torch.inference_mode()
def process(image, instruction):
# resize image
w, h = image.size
if w * h > MAX_PIXELS:
image = resize_image(image)
conversation = [
{
"role": "system",
"content": [
{
"type": "text",
"text": "You are a GUI agent. Given a screenshot of the current GUI and a human instruction, your task is to locate the screen element that corresponds to the instruction. You should output a PyAutoGUI action that performs a click on the correct position. To indicate the click location, we will use some special tokens, which is used to refer to a visual patch later. For example, you can output: pyautogui.click(<your_special_token_here>).",
}
]
},
{
"role": "user",
"content": [
{
"type": "image",
"image": image, # PIL.Image.Image or str to path
# "image_url": "https://xxxxx.png" or "https://xxxxx.jpg" or "file://xxxxx.png" or "", will be split by "base64,"
},
{
"type": "text",
"text": instruction,
},
],
},
]
try:
pred = inference(conversation, model, tokenizer, data_processor, use_placeholder=True, topk=3)
except Exception as e:
print(e)
return image, f"Error: {e}", None
px, py = pred["topk_points"][0]
output_coord = f"({px:.4f}, {py:.4f})"
img_with_point = draw_point(image, (px * w, py * h))
n_width, n_height = pred["n_width"], pred["n_height"]
attn_scores = pred["attn_scores"]
att_map = get_attn_map(image, attn_scores, n_width, n_height)
return img_with_point, output_coord, att_map
with gr.Blocks(title=title, css=css) as demo:
gr.Markdown(header)
with gr.Row():
with gr.Column():
input_image = gr.Image(
type='pil', label='Upload image')
# text box
input_instruction = gr.Textbox(label='Instruction', placeholder='Text your (low-level) instruction here')
submit_button = gr.Button(
value='Submit', variant='primary')
with gr.Column():
image_with_point = gr.Image(type='pil', label='Image with Point (red circle)')
with gr.Accordion('Detailed prediction'):
pred_xy = gr.Textbox(label='Predicted Coordinates', placeholder='(x, y)')
att_map = gr.Image(type='pil', label='Attention Map')
submit_button.click(
fn=process,
inputs=[
input_image,
input_instruction
],
outputs=[image_with_point, pred_xy, att_map]
)
# demo.launch(debug=False, show_error=True, share=True)
# demo.launch(share=True, server_port=7861, server_name='0.0.0.0')
demo.queue().launch(share=False)