File size: 1,509 Bytes
88dc3ba
 
335cb84
eb4d23a
88dc3ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cb2a95
 
 
88dc3ba
 
5cb2a95
88dc3ba
5cb2a95
88dc3ba
 
 
 
 
 
 
7a0b87f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import subprocess

subprocess.run(["python", "-m", "pip", "install", "--upgrade", "pip"])
subprocess.run(["pip", "install", "gradio", "--upgrade"])
subprocess.run(["pip", "install", "datasets"])
subprocess.run(["pip", "install", "transformers"])
subprocess.run(["pip", "install", "torch", "torchvision", "torchaudio", "-f", "https://download.pytorch.org/whl/torch_stable.html"])

import gradio as gr
from transformers import WhisperProcessor, WhisperForConditionalGeneration

# Load model and processor
processor = WhisperProcessor.from_pretrained("openai/whisper-large")
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large")
forced_decoder_ids = processor.get_decoder_prompt_ids(language="italian", task="transcribe")

# Custom preprocessing function
def preprocess_audio(audio_data):
    # Apply any custom preprocessing to the audio data here if needed
    # Ensure that the input data is a valid format for the model
    processed_data = processor(audio_data, return_tensors="pt", padding=True, truncation=True)
    return processed_data

# Function to perform ASR on audio data
def transcribe_audio(input_features):
    # Generate token ids
    predicted_ids = model.generate(**input_features)
    
    # Decode token ids to text
    transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
    
    return transcription[0]

# Create Gradio interface
audio_input = gr.Audio()
gr.Interface(fn=transcribe_audio, inputs=audio_input, outputs="text").launch()