Spaces:
Sleeping
Sleeping
File size: 1,509 Bytes
88dc3ba 335cb84 eb4d23a 88dc3ba 5cb2a95 88dc3ba 5cb2a95 88dc3ba 5cb2a95 88dc3ba 7a0b87f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
import subprocess
subprocess.run(["python", "-m", "pip", "install", "--upgrade", "pip"])
subprocess.run(["pip", "install", "gradio", "--upgrade"])
subprocess.run(["pip", "install", "datasets"])
subprocess.run(["pip", "install", "transformers"])
subprocess.run(["pip", "install", "torch", "torchvision", "torchaudio", "-f", "https://download.pytorch.org/whl/torch_stable.html"])
import gradio as gr
from transformers import WhisperProcessor, WhisperForConditionalGeneration
# Load model and processor
processor = WhisperProcessor.from_pretrained("openai/whisper-large")
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large")
forced_decoder_ids = processor.get_decoder_prompt_ids(language="italian", task="transcribe")
# Custom preprocessing function
def preprocess_audio(audio_data):
# Apply any custom preprocessing to the audio data here if needed
# Ensure that the input data is a valid format for the model
processed_data = processor(audio_data, return_tensors="pt", padding=True, truncation=True)
return processed_data
# Function to perform ASR on audio data
def transcribe_audio(input_features):
# Generate token ids
predicted_ids = model.generate(**input_features)
# Decode token ids to text
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
return transcription[0]
# Create Gradio interface
audio_input = gr.Audio()
gr.Interface(fn=transcribe_audio, inputs=audio_input, outputs="text").launch()
|