Spaces:
Sleeping
Sleeping
import subprocess | |
subprocess.run(["pip", "install", "datasets"]) | |
subprocess.run(["pip", "install", "transformers"]) | |
subprocess.run(["pip", "install", "torch", "torchvision", "torchaudio", "-f", "https://download.pytorch.org/whl/torch_stable.html"]) | |
import gradio as gr | |
from transformers import WhisperProcessor, WhisperForConditionalGeneration | |
# Load model and processor | |
processor = WhisperProcessor.from_pretrained("openai/whisper-large") | |
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large") | |
model.config.forced_decoder_ids = None | |
# Function to perform ASR on audio data | |
def transcribe_audio(audio_data): | |
# Apply custom preprocessing to the audio data if needed | |
processed_input = processor(audio_data, return_tensors="pt").input_features | |
# Generate token ids | |
predicted_ids = model.generate(processed_input) | |
# Decode token ids to text | |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) | |
return transcription[0] | |
# Create Gradio interface | |
audio_input = gr.Audio() | |
gr.Interface(fn=transcribe_audio, inputs=audio_input, outputs="text").launch() | |