Spaces:
Sleeping
Sleeping
import subprocess | |
subprocess.run(["pip", "install", "gradio", "--upgrade"]) | |
subprocess.run(["pip", "install", "transformers"]) | |
subprocess.run(["pip", "install", "torchaudio", "--upgrade"]) | |
import gradio as gr | |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | |
import torchaudio | |
import torch | |
# Load model and processor | |
processor = Wav2Vec2Processor.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-italian") | |
model = Wav2Vec2ForCTC.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-italian") | |
# Function to perform ASR on audio data | |
def transcribe_audio(audio_data): | |
print("Received audio data:", audio_data) # Debug print | |
# Check if audio_data is None or not a tuple of length 2 | |
if audio_data is None or not isinstance(audio_data, tuple) or len(audio_data) != 2: | |
return "Invalid audio data format." | |
sample_rate, waveform = audio_data | |
# Check if waveform is None or not a NumPy array | |
if waveform is None or not isinstance(waveform, torch.Tensor): | |
return "Invalid audio data format." | |
try: | |
# Convert audio data to mono and normalize | |
audio_data = torchaudio.transforms.Resample(sample_rate, 16000)(waveform) | |
audio_data = torchaudio.functional.gain(audio_data, gain_db=5.0) | |
# Apply custom preprocessing to the audio data if needed | |
input_values = processor(audio_data[0], return_tensors="pt").input_values | |
# Perform ASR | |
with torch.no_grad(): | |
logits = model(input_values).logits | |
# Decode the output | |
predicted_ids = torch.argmax(logits, dim=-1) | |
transcription = processor.batch_decode(predicted_ids) | |
return transcription[0] | |
except Exception as e: | |
return f"An error occurred: {str(e)}" | |
# Create Gradio interface | |
audio_input = gr.Audio() | |
gr.Interface(fn=transcribe_audio, inputs=audio_input, outputs="text").launch() | |