practiceAI / app.py
MusIre's picture
Update app.py
527e644
raw
history blame
1.35 kB
import subprocess
import gradio as gr # Add this import statement
subprocess.run(["python", "-m", "pip", "install", "--upgrade", "pip"])
subprocess.run(["pip", "install", "gradio", "--upgrade"])
subprocess.run(["pip", "install", "transformers"])
subprocess.run(["pip", "install", "torch", "torchvision", "torchaudio", "-f", "https://download.pytorch.org/whl/torch_stable.html"])
# Install necessary libraries
!pip install gradio torch torchaudio
import gradio as gr
import torchaudio
from transformers import pipeline
# Load the Whispy/Whisper Italian ASR model
whisper_italian_asr = pipeline("whisper-italian")
# Define the ASR function
def transcribe_audio(audio):
# Save the audio file
torchaudio.save("user_audio.wav", audio.squeeze().numpy(), 16000)
# Load the saved audio file
user_audio, _ = torchaudio.load("user_audio.wav", normalize=True)
# Perform ASR using the Whispy/Whisper Italian model
transcription = whisper_italian_asr(user_audio.numpy())
return transcription[0]["transcription"]
# Create the Gradio interface
audio_input = gr.Audio(preprocess=torchaudio.transforms.Resample(orig_freq=44100, new_freq=16000))
iface = gr.Interface(
fn=transcribe_audio,
inputs=audio_input,
outputs="text",
live=True,
interpretation="default"
)
# Launch the Gradio app
iface.launch(share=True)