Spaces:
Sleeping
Sleeping
import subprocess | |
import gradio as gr # Add this import statement | |
subprocess.run(["python", "-m", "pip", "install", "--upgrade", "pip"]) | |
subprocess.run(["pip", "install", "gradio", "--upgrade"]) | |
subprocess.run(["pip", "install", "transformers"]) | |
subprocess.run(["pip", "install", "torch", "torchvision", "torchaudio", "-f", "https://download.pytorch.org/whl/torch_stable.html"]) | |
# Install necessary libraries | |
!pip install gradio torch torchaudio | |
import gradio as gr | |
import torchaudio | |
from transformers import pipeline | |
# Load the Whispy/Whisper Italian ASR model | |
whisper_italian_asr = pipeline("whisper-italian") | |
# Define the ASR function | |
def transcribe_audio(audio): | |
# Save the audio file | |
torchaudio.save("user_audio.wav", audio.squeeze().numpy(), 16000) | |
# Load the saved audio file | |
user_audio, _ = torchaudio.load("user_audio.wav", normalize=True) | |
# Perform ASR using the Whispy/Whisper Italian model | |
transcription = whisper_italian_asr(user_audio.numpy()) | |
return transcription[0]["transcription"] | |
# Create the Gradio interface | |
audio_input = gr.Audio(preprocess=torchaudio.transforms.Resample(orig_freq=44100, new_freq=16000)) | |
iface = gr.Interface( | |
fn=transcribe_audio, | |
inputs=audio_input, | |
outputs="text", | |
live=True, | |
interpretation="default" | |
) | |
# Launch the Gradio app | |
iface.launch(share=True) | |