Spaces:
Sleeping
Sleeping
import subprocess | |
subprocess.run(["python", "-m", "pip", "install", "--upgrade", "pip"]) | |
subprocess.run(["pip", "install", "gradio", "--upgrade"]) | |
subprocess.run(["pip", "install", "datasets"]) | |
subprocess.run(["pip", "install", "transformers"]) | |
subprocess.run(["pip", "install", "torch", "torchvision", "torchaudio", "-f", "https://download.pytorch.org/whl/torch_stable.html"]) | |
import gradio as gr | |
from transformers import WhisperProcessor, WhisperForConditionalGeneration | |
# Load model and processor | |
processor = WhisperProcessor.from_pretrained("openai/whisper-large") | |
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large") | |
forced_decoder_ids = processor.get_decoder_prompt_ids(language="italian", task="transcribe") | |
# Custom preprocessing function | |
def preprocess_audio(audio_data, sampling_rate=16_000): | |
# Ensure that the input data is a valid format for the model | |
# Convert the audio data to a numpy array with a correct shape | |
raw_speech = np.asarray(audio_data, dtype=np.float32) | |
# Pad or truncate the audio data to the required length | |
if len(raw_speech) > processor.feature_extractor.max_len: | |
raw_speech = raw_speech[:processor.feature_extractor.max_len] | |
else: | |
raw_speech = np.pad(raw_speech, (0, processor.feature_extractor.max_len - len(raw_speech))) | |
# Process the audio data using the Whisper processor | |
processed_data = processor( | |
raw_speech, | |
sampling_rate=sampling_rate, | |
return_tensors="pt", | |
padding=True, | |
truncation=True | |
) | |
return processed_data.input_features | |
# Function to perform ASR on audio data | |
def transcribe_audio(audio_data): | |
# Preprocess the audio data | |
input_features = preprocess_audio(audio_data) | |
# Generate token ids | |
predicted_ids = model.generate(input_features) | |
# Decode token ids to text | |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) | |
return transcription[0] | |
# Create Gradio interface | |
audio_input = gr.Audio() | |
gr.Interface(fn=transcribe_audio, inputs=audio_input, outputs="text").launch() | |