Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,22 @@
|
|
1 |
import subprocess
|
|
|
2 |
|
3 |
subprocess.run(["python", "-m", "pip", "install", "--upgrade", "pip"])
|
4 |
subprocess.run(["pip", "install", "gradio", "--upgrade"])
|
5 |
subprocess.run(["pip", "install", "datasets"])
|
6 |
subprocess.run(["pip", "install", "transformers"])
|
7 |
subprocess.run(["pip", "install", "torch", "torchvision", "torchaudio", "-f", "https://download.pytorch.org/whl/torch_stable.html"])
|
|
|
8 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
9 |
from datasets import load_dataset
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# load model and processor
|
12 |
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
13 |
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
|
@@ -16,14 +25,6 @@ forced_decoder_ids = processor.get_decoder_prompt_ids(language="italian", task="
|
|
16 |
# load dummy dataset and read audio files
|
17 |
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
18 |
sample = ds[0]["audio"]
|
19 |
-
input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features
|
20 |
-
|
21 |
-
# generate token ids
|
22 |
-
predicted_ids = model.generate(input_features)
|
23 |
-
# decode token ids to text
|
24 |
-
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False)
|
25 |
-
|
26 |
-
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
27 |
|
28 |
# Create Gradio interface
|
29 |
audio_input = gr.Audio()
|
|
|
1 |
import subprocess
|
2 |
+
import gradio as gr # Add this import statement
|
3 |
|
4 |
subprocess.run(["python", "-m", "pip", "install", "--upgrade", "pip"])
|
5 |
subprocess.run(["pip", "install", "gradio", "--upgrade"])
|
6 |
subprocess.run(["pip", "install", "datasets"])
|
7 |
subprocess.run(["pip", "install", "transformers"])
|
8 |
subprocess.run(["pip", "install", "torch", "torchvision", "torchaudio", "-f", "https://download.pytorch.org/whl/torch_stable.html"])
|
9 |
+
|
10 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
11 |
from datasets import load_dataset
|
12 |
|
13 |
+
# Define the transcribe_audio function
|
14 |
+
def transcribe_audio(audio):
|
15 |
+
input_features = processor(audio, return_tensors="pt").input_features
|
16 |
+
predicted_ids = model.generate(input_features)
|
17 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
18 |
+
return transcription[0]
|
19 |
+
|
20 |
# load model and processor
|
21 |
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
22 |
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
|
|
|
25 |
# load dummy dataset and read audio files
|
26 |
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
27 |
sample = ds[0]["audio"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
# Create Gradio interface
|
30 |
audio_input = gr.Audio()
|