File size: 21,287 Bytes
226c234
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
import streamlit as st
from io import BytesIO
import ibm_watsonx_ai
import secretsload
import genparam
import requests
import time
import re
import json

from ibm_watsonx_ai.foundation_models import ModelInference
from ibm_watsonx_ai import Credentials, APIClient
from ibm_watsonx_ai.metanames import GenTextParamsMetaNames as GenParams
from ibm_watsonx_ai.metanames import GenTextReturnOptMetaNames as RetParams

from ibm_watsonx_ai.foundation_models import Embeddings
from ibm_watsonx_ai.foundation_models.utils.enums import EmbeddingTypes
from pymilvus import MilvusClient

from secretsload import load_stsecrets

credentials = load_stsecrets()

st.set_page_config(
    page_title="The Solutioning Sages",
    page_icon="🪄",
    initial_sidebar_state="collapsed",
    layout="wide"
)

# Password protection
def check_password():
    def password_entered():
        if st.session_state["password"] == st.secrets["app_password"]:
            st.session_state["password_correct"] = True
            del st.session_state["password"]
        else:
            st.session_state["password_correct"] = False

    if "password_correct" not in st.session_state:
        st.markdown("\n\n")
        st.text_input("Enter the password", type="password", on_change=password_entered, key="password")
        st.divider()
        st.info("Designed and developed by Milan Mrdenovic © IBM Norway 2024")
        return False
    elif not st.session_state["password_correct"]:
        st.markdown("\n\n")
        st.text_input("Enter the password", type="password", on_change=password_entered, key="password")
        st.divider()
        st.error("😕 Incorrect password")
        st.info("Designed and developed by Milan Mrdenovic © IBM Norway 2024")
        return False
    else:
        return True

def initialize_session_state():
    if 'chat_history_1' not in st.session_state:
        st.session_state.chat_history_1 = []
    if 'chat_history_2' not in st.session_state:
        st.session_state.chat_history_2 = []
    if 'chat_history_3' not in st.session_state:
        st.session_state.chat_history_3 = []
    if 'first_question' not in st.session_state:
        st.session_state.first_question = False 
    if "counter" not in st.session_state:
        st.session_state["counter"] = 0
    if 'token_statistics' not in st.session_state:
        st.session_state.token_statistics = []

# three_column_style = """
#     <style>
#     .stColumn {
#         padding: 0.5rem;
#         border-right: 1px solid #dedede;
#     }
#     .stColumn:last-child {
#         border-right: none;
#     }
#     .chat-container {
#         height: calc(100vh - 200px);
#         overflow-y: auto;
#     }
#     </style>
# """

three_column_style = """
    <style>
    .stColumn {
        padding: 0.5rem;
        border-right: 1px solid #dedede;
    }
    .stColumn:last-child {
        border-right: none;
    }
    .chat-container {
        height: calc(100vh - 200px);
        overflow-y: auto;
        display: flex;
        flex-direction: column;
    }
    .chat-messages {
        display: flex;
        flex-direction: column;
        gap: 1rem;
    }
    </style>
""" # Alt Style

#-----
def get_active_model():
    return genparam.SELECTED_MODEL_1 if genparam.ACTIVE_MODEL == 0 else genparam.SELECTED_MODEL_2

def get_active_prompt_template():
    return genparam.PROMPT_TEMPLATE_1 if genparam.ACTIVE_MODEL == 0 else genparam.PROMPT_TEMPLATE_2

def get_active_vector_index():
    return st.secrets["vector_index_id_1"] if genparam.ACTIVE_INDEX == 0 else st.secrets["vector_index_id_2"]
#-----

def setup_client(project_id):
    credentials = Credentials(
        url=st.secrets["url"],
        api_key=st.secrets["api_key"]
    )
    apo = st.secrets["api_key"]
    client = APIClient(credentials, project_id=project_id)
    return credentials, client

wml_credentials, client = setup_client(st.secrets["project_id"])

def setup_vector_index(client, wml_credentials, vector_index_id):
    vector_index_details = client.data_assets.get_details(vector_index_id)
    vector_index_properties = vector_index_details["entity"]["vector_index"]

    emb = Embeddings(
        model_id=vector_index_properties["settings"]["embedding_model_id"],
        #model_id="sentence-transformers/all-minilm-l12-v2",
        credentials=wml_credentials,
        project_id=st.secrets["project_id"],
        params={
            "truncate_input_tokens": 512
        }
    )
    
    vector_store_schema = vector_index_properties["settings"]["schema_fields"]
    connection_details = client.connections.get_details(vector_index_details["entity"]["vector_index"]["store"]["connection_id"])
    connection_properties = connection_details["entity"]["properties"]
    
    milvus_client = MilvusClient(
        uri=f'https://{connection_properties.get("host")}:{connection_properties.get("port")}',
        user=connection_properties.get("username"),
        password=connection_properties.get("password"),
        db_name=vector_index_properties["store"]["database"]
    )

    return milvus_client, emb, vector_index_properties, vector_store_schema

def proximity_search(question, milvus_client, emb, vector_index_properties, vector_store_schema):
    query_vectors = emb.embed_query(question)
    milvus_response = milvus_client.search(
        collection_name=vector_index_properties["store"]["index"],
        data=[query_vectors],
        limit=vector_index_properties["settings"]["top_k"],
        metric_type="L2",
        output_fields=[
            vector_store_schema.get("text"),
            vector_store_schema.get("document_name"),
            vector_store_schema.get("page_number")
        ]
    )
    
    documents = []
    
    for hit in milvus_response[0]:
        text = hit["entity"].get(vector_store_schema.get("text"), "")
        doc_name = hit["entity"].get(vector_store_schema.get("document_name"), "Unknown Document")
        page_num = hit["entity"].get(vector_store_schema.get("page_number"), "N/A")
        
        formatted_result = f"Document: {doc_name}\nContent: {text}\nPage: {page_num}\n"
        documents.append(formatted_result)

    joined = "\n".join(documents)
    retrieved = f"""Number of Retrieved Documents: {len(documents)}\n\n{joined}"""

    return retrieved

def prepare_prompt(prompt, chat_history):
    if genparam.TYPE == "chat" and chat_history:
        chats = "\n".join([f"{message['role']}: \"{message['content']}\"" for message in chat_history])
        prompt = f"""Retrieved Contextual Information:\n__grounding__\n\nConversation History:\n{chats}\n\nNew User Input: {prompt}"""
        return prompt
    else:
        prompt = f"""Retrieved Contextual Information:\n__grounding__\n\nUser Input: {prompt}"""
        return prompt

def apply_prompt_syntax(prompt, system_prompt, prompt_template, bake_in_prompt_syntax):
    model_family_syntax = {
        "llama3-instruct (llama-3, 3.1 & 3.2) - system": """<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n""",
        "llama3-instruct (llama-3, 3.1 & 3.2) - user": """<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n""",
        "granite-13b-chat & instruct - system": """<|system|>\n{system_prompt}\n<|user|>\n{prompt}\n<|assistant|>\n\n""",
        "granite-13b-chat & instruct - user": """<|user|>\n{prompt}\n<|assistant|>\n\n""",
        "mistral & mixtral v2 tokenizer - system": """<s>[INST] System Prompt: {system_prompt} [/INST][INST] {prompt} [/INST]\n\n""",
        "mistral & mixtral v2 tokenizer - user": """<s>[INST] {prompt} [/INST]\n\n""",
        "no syntax - system": """{system_prompt}\n\n{prompt}""",
        "no syntax - user": """{prompt}"""
    }
    
    if bake_in_prompt_syntax:
        template = model_family_syntax[prompt_template]
        if system_prompt:
            return template.format(system_prompt=system_prompt, prompt=prompt)
    return prompt

def generate_response(watsonx_llm, prompt_data, params):
    generated_response = watsonx_llm.generate_text_stream(prompt=prompt_data, params=params)
    for chunk in generated_response:
        yield chunk

def fetch_response(user_input, milvus_client, emb, vector_index_properties, vector_store_schema, system_prompt, chat_history):
    # Get grounding documents
    grounding = proximity_search(
        question=user_input,
        milvus_client=milvus_client,
        emb=emb,
        vector_index_properties=vector_index_properties,
        vector_store_schema=vector_store_schema
    )

    # Special handling for PATH-er B. (first column)
    if chat_history == st.session_state.chat_history_1:
        # Display user question first
        with st.chat_message("user", avatar=genparam.USER_AVATAR):
            st.markdown(user_input)
        
        # Parse and display each document from the grounding
        documents = grounding.split("\n\n")[2:]  # Skip the count line and first newline
        for doc in documents:
            if doc.strip():  # Only process non-empty strings
                parts = doc.split("\n")
                doc_name = parts[0].replace("Document: ", "")
                content = parts[1].replace("Content: ", "")
                
                # Display document with delay
                time.sleep(0.5)
                st.markdown(f"**{doc_name}**")
                st.code(content)

        # Store in chat history
        return grounding

    # For MOD-ther S. (second column)
    elif chat_history == st.session_state.chat_history_2:
        prompt = prepare_prompt(user_input, chat_history)
        prompt_data = apply_prompt_syntax(
            prompt,
            system_prompt,
            get_active_prompt_template(),
            genparam.BAKE_IN_PROMPT_SYNTAX
        )
        prompt_data = prompt_data.replace("__grounding__", grounding)

        # Add debug information to column 1 if enabled
        if genparam.INPUT_DEBUG_VIEW == 1:
            with st.columns(3)[0]:  # Access first column
                st.markdown(f"**{genparam.BOT_2_AVATAR} {genparam.BOT_2_NAME} Prompt Data:**")
                st.code(prompt_data, language="text")

    # For SYS-ter V. (third column)
    else:
        # Get chat history from MOD-ther S.
        mod_ther_history = st.session_state.chat_history_2
        prompt = prepare_prompt(user_input, mod_ther_history)
        prompt_data = apply_prompt_syntax(
            prompt,
            system_prompt,
            get_active_prompt_template(),
            genparam.BAKE_IN_PROMPT_SYNTAX
        )
        prompt_data = prompt_data.replace("__grounding__", grounding)

            # Add debug information to column 1 if enabled
        if genparam.INPUT_DEBUG_VIEW == 1:
            with st.columns(3)[0]:  # Access first column
                st.markdown(f"**{genparam.BOT_3_AVATAR} {genparam.BOT_3_NAME} Prompt Data:**")
                st.code(prompt_data, language="text")

    # Continue with normal processing for columns 2 and 3
    watsonx_llm = ModelInference(
        api_client=client, 
        model_id=get_active_model(),
        verify=genparam.VERIFY
    )

    params = {
        GenParams.DECODING_METHOD: genparam.DECODING_METHOD,
        GenParams.MAX_NEW_TOKENS: genparam.MAX_NEW_TOKENS,
        GenParams.MIN_NEW_TOKENS: genparam.MIN_NEW_TOKENS,
        GenParams.REPETITION_PENALTY: genparam.REPETITION_PENALTY,
        GenParams.STOP_SEQUENCES: genparam.STOP_SEQUENCES
    }

    bot_name = None
    bot_avatar = None
    if chat_history == st.session_state.chat_history_1:
        bot_name = genparam.BOT_1_NAME
        bot_avatar = genparam.BOT_1_AVATAR
    elif chat_history == st.session_state.chat_history_2:
        bot_name = genparam.BOT_2_NAME
        bot_avatar = genparam.BOT_2_AVATAR
    else:
        bot_name = genparam.BOT_3_NAME
        bot_avatar = genparam.BOT_3_AVATAR

    with st.chat_message(bot_name, avatar=bot_avatar):
        if chat_history != st.session_state.chat_history_1:  # Only generate responses for columns 2 and 3
            stream = generate_response(watsonx_llm, prompt_data, params)
            response = st.write_stream(stream)
            
            # Only capture tokens for MOD-ther S. and SYS-ter V.
            if genparam.TOKEN_CAPTURE_ENABLED and chat_history != st.session_state.chat_history_1:
                token_stats = capture_tokens(prompt_data, response, bot_name)
                if token_stats:
                    st.session_state.token_statistics.append(token_stats)
        else:
            response = grounding  # For column 1, we already displayed the content

    return response

def capture_tokens(prompt_data, response, chat_number):
    if not genparam.TOKEN_CAPTURE_ENABLED:
        return

    watsonx_llm = ModelInference(
        api_client=client, 
        model_id=genparam.SELECTED_MODEL,
        verify=genparam.VERIFY
    )

    input_tokens = watsonx_llm.tokenize(prompt=prompt_data)["result"]["token_count"]
    output_tokens = watsonx_llm.tokenize(prompt=response)["result"]["token_count"]
    total_tokens = input_tokens + output_tokens

    return {
        "bot_name": bot_name,
        "input_tokens": input_tokens,
        "output_tokens": output_tokens,
        "total_tokens": total_tokens,
        "timestamp": time.strftime("%H:%M:%S")
    }

def main():
    initialize_session_state()

    # Apply custom styles
    st.markdown(three_column_style, unsafe_allow_html=True)
    
    # Sidebar configuration
    st.sidebar.header('The Solutioning Sages')
    st.sidebar.divider()
    
    # Display token statistics in sidebar
    st.sidebar.subheader("Token Usage Statistics")
    
    # Group token statistics by interaction (for MOD-ther S. and SYS-ter V. only)
    if st.session_state.token_statistics:
        current_timestamp = None
        interaction_count = 0
        stats_by_time = {}
        
        # Group stats by timestamp
        for stat in st.session_state.token_statistics:
            if stat["timestamp"] not in stats_by_time:
                stats_by_time[stat["timestamp"]] = []
            stats_by_time[stat["timestamp"]].append(stat)
        
        # Display grouped stats
        for timestamp, stats in stats_by_time.items():
            interaction_count += 1
            st.sidebar.markdown(f"**Interaction {interaction_count}** ({timestamp})")
            
            # Calculate total tokens for this interaction
            total_input = sum(stat['input_tokens'] for stat in stats)
            total_output = sum(stat['output_tokens'] for stat in stats)
            total = total_input + total_output
            
            # Display individual bot statistics
            for stat in stats:
                st.sidebar.markdown(
                    f"_{stat['bot_name']}_  \n"
                    f"Input: {stat['input_tokens']} tokens  \n"
                    f"Output: {stat['output_tokens']} tokens  \n"
                    f"Total: {stat['total_tokens']} tokens"
                )
            
            # Display interaction totals
            st.sidebar.markdown("**Interaction Totals:**")
            st.sidebar.markdown(
                f"Total Input: {total_input} tokens  \n"
                f"Total Output: {total_output} tokens  \n"
                f"Total Usage: {total} tokens"
            )
            st.sidebar.markdown("---")
    
    st.sidebar.markdown("")


    if not check_password():
        st.stop()

    # Get user input before column creation
    user_input = st.chat_input("Ask your question here", key="user_input")
    
    if user_input:
        # Create three columns
        col1, col2, col3 = st.columns(3)
        
        # First column - PATH-er B. (Document Display)
        with col1:
            st.markdown("<div class='chat-container'>", unsafe_allow_html=True)
            st.subheader(f"{genparam.BOT_1_AVATAR} {genparam.BOT_1_NAME}")
            st.markdown("<div class='chat-messages'>", unsafe_allow_html=True)
            
            # Display previous messages
            for message in st.session_state.chat_history_1:
                if message["role"] == "user":
                    with st.chat_message(message["role"], avatar=genparam.USER_AVATAR):
                        st.markdown(message['content'])
                else:
                    # Parse and display stored documents
                    documents = message['content'].split("\n\n")[2:]  # Skip count line
                    for doc in documents:
                        if doc.strip():
                            parts = doc.split("\n")
                            doc_name = parts[0].replace("Document: ", "")
                            content = parts[1].replace("Content: ", "")
                            st.markdown(f"**{doc_name}**")
                            st.code(content)
            
            # Add user message and get new response
            st.session_state.chat_history_1.append({"role": "user", "content": user_input, "avatar": genparam.USER_AVATAR})
            milvus_client, emb, vector_index_properties, vector_store_schema = setup_vector_index(
                client, 
                wml_credentials,
                st.secrets["vector_index_id_1"]  # Use first vector index
            )
            system_prompt = genparam.BOT_1_PROMPT
            
            response = fetch_response(
                user_input, 
                milvus_client, 
                emb, 
                vector_index_properties, 
                vector_store_schema,
                system_prompt,
                st.session_state.chat_history_1
            )
            st.session_state.chat_history_1.append({"role": genparam.BOT_1_NAME, "content": response, "avatar": genparam.BOT_1_AVATAR})
            st.markdown("</div></div>", unsafe_allow_html=True)

        # Second column - MOD-ther S. (Uses documents from first vector index)
        with col2:
            st.markdown("<div class='chat-container'>", unsafe_allow_html=True)
            st.subheader(f"{genparam.BOT_2_AVATAR} {genparam.BOT_2_NAME}")
            st.markdown("<div class='chat-messages'>", unsafe_allow_html=True)
            
            for message in st.session_state.chat_history_2:
                if message["role"] != "user":
                    with st.chat_message(message["role"], avatar=genparam.BOT_2_AVATAR):
                        st.markdown(message['content'])
            
            st.session_state.chat_history_2.append({"role": "user", "content": user_input, "avatar": genparam.USER_AVATAR})
            milvus_client, emb, vector_index_properties, vector_store_schema = setup_vector_index(
                client, 
                wml_credentials,
                st.secrets["vector_index_id_1"]  # Use first vector index
            )
            system_prompt = genparam.BOT_2_PROMPT
            
            response = fetch_response(
                user_input, 
                milvus_client, 
                emb, 
                vector_index_properties, 
                vector_store_schema,
                system_prompt,
                st.session_state.chat_history_2
            )
            st.session_state.chat_history_2.append({"role": genparam.BOT_2_NAME, "content": response, "avatar": genparam.BOT_2_AVATAR})
            st.markdown("</div></div>", unsafe_allow_html=True)
            
        # Third column - SYS-ter V. (Uses second vector index and chat history from second column)
        with col3:
            st.markdown("<div class='chat-container'>", unsafe_allow_html=True)
            st.subheader(f"{genparam.BOT_3_AVATAR} {genparam.BOT_3_NAME}")
            st.markdown("<div class='chat-messages'>", unsafe_allow_html=True)
            
            for message in st.session_state.chat_history_3:
                if message["role"] != "user":
                    with st.chat_message(message["role"], avatar=genparam.BOT_3_AVATAR):
                        st.markdown(message['content'])
            
            st.session_state.chat_history_3.append({"role": "user", "content": user_input, "avatar": genparam.USER_AVATAR})
            milvus_client, emb, vector_index_properties, vector_store_schema = setup_vector_index(
                client, 
                wml_credentials,
                st.secrets["vector_index_id_2"]  # Use second vector index
            )
            system_prompt = genparam.BOT_3_PROMPT
            
            response = fetch_response(
                user_input, 
                milvus_client, 
                emb, 
                vector_index_properties, 
                vector_store_schema,
                system_prompt,
                st.session_state.chat_history_3
            )
            st.session_state.chat_history_3.append({"role": genparam.BOT_3_NAME, "content": response, "avatar": genparam.BOT_3_AVATAR})
            st.markdown("</div></div>", unsafe_allow_html=True)


        # Update sidebar with new question
        st.sidebar.markdown("---")
        st.sidebar.markdown("**Latest Question:**")
        st.sidebar.markdown(f"_{user_input}_")

if __name__ == "__main__":
    main()