MilanM commited on
Commit
3fe98fb
·
verified ·
1 Parent(s): 197beef

Delete app_v2.py

Browse files
Files changed (1) hide show
  1. app_v2.py +0 -1403
app_v2.py DELETED
@@ -1,1403 +0,0 @@
1
- import marimo
2
-
3
- __generated_with = "0.11.16"
4
- app = marimo.App(width="medium")
5
-
6
-
7
- @app.cell
8
- def _():
9
- import marimo as mo
10
- import os
11
- return mo, os
12
-
13
-
14
- @app.cell
15
- def _():
16
- def get_markdown_content(file_path):
17
- with open(file_path, 'r', encoding='utf-8') as file:
18
- content = file.read()
19
- return content
20
- return (get_markdown_content,)
21
-
22
-
23
- @app.cell
24
- def _(get_markdown_content, mo):
25
- intro_text = get_markdown_content('intro_markdown/intro.md')
26
- intro_marimo = get_markdown_content('intro_markdown/intro_marimo.md')
27
- intro_notebook = get_markdown_content('intro_markdown/intro_notebook.md')
28
- intro_comparison = get_markdown_content('intro_markdown/intro_comparison.md')
29
-
30
- intro = mo.carousel([
31
- mo.md(f"{intro_text}"),
32
- mo.md(f"{intro_marimo}"),
33
- mo.md(f"{intro_notebook}"),
34
- mo.md(f"{intro_comparison}"),
35
- ])
36
-
37
- mo.accordion({"## Notebook Introduction":intro})
38
- return intro, intro_comparison, intro_marimo, intro_notebook, intro_text
39
-
40
-
41
- @app.cell
42
- def _(os):
43
- ### Imports
44
- from typing import (
45
- Any, Dict, List, Optional, Pattern, Set, Union, Tuple
46
- )
47
- from pathlib import Path
48
- from urllib.request import urlopen
49
- # from rich.markdown import Markdown as Markd
50
- from rich.text import Text
51
- from rich import print
52
- from tqdm import tqdm
53
- from enum import Enum
54
- import pandas as pd
55
- import tempfile
56
- import requests
57
- import getpass
58
- import urllib3
59
- import base64
60
- import time
61
- import json
62
- import uuid
63
- import ssl
64
- import ast
65
- import re
66
-
67
- pd.set_option('display.max_columns', None)
68
- pd.set_option('display.max_rows', None)
69
- pd.set_option('display.max_colwidth', None)
70
- pd.set_option('display.width', None)
71
-
72
- # Set explicit temporary directory
73
- os.environ['TMPDIR'] = '/tmp'
74
-
75
- # Make sure Python's tempfile module also uses this directory
76
- tempfile.tempdir = '/tmp'
77
- return (
78
- Any,
79
- Dict,
80
- Enum,
81
- List,
82
- Optional,
83
- Path,
84
- Pattern,
85
- Set,
86
- Text,
87
- Tuple,
88
- Union,
89
- ast,
90
- base64,
91
- getpass,
92
- json,
93
- pd,
94
- print,
95
- re,
96
- requests,
97
- ssl,
98
- tempfile,
99
- time,
100
- tqdm,
101
- urllib3,
102
- urlopen,
103
- uuid,
104
- )
105
-
106
-
107
- @app.cell
108
- def _(mo):
109
- ### Credentials for the watsonx.ai SDK client
110
-
111
- # Endpoints
112
- wx_platform_url = "https://api.dataplatform.cloud.ibm.com"
113
- regions = {
114
- "US": "https://us-south.ml.cloud.ibm.com",
115
- "EU": "https://eu-de.ml.cloud.ibm.com",
116
- "GB": "https://eu-gb.ml.cloud.ibm.com",
117
- "JP": "https://jp-tok.ml.cloud.ibm.com",
118
- "AU": "https://au-syd.ml.cloud.ibm.com",
119
- "CA": "https://ca-tor.ml.cloud.ibm.com"
120
- }
121
-
122
- # Create a form with multiple elements
123
- client_instantiation_form = (
124
- mo.md('''
125
- ###**watsonx.ai credentials:**
126
-
127
- {wx_region}
128
-
129
- {wx_api_key}
130
-
131
- {space_id}
132
- ''').style(max_height="300px", overflow="auto", border_color="blue")
133
- .batch(
134
- wx_region = mo.ui.dropdown(regions, label="Select your watsonx.ai region:", value="US", searchable=True),
135
- wx_api_key = mo.ui.text(placeholder="Add your IBM Cloud api-key...", label="IBM Cloud Api-key:", kind="password"),
136
- # project_id = mo.ui.text(placeholder="Add your watsonx.ai project_id...", label="Project_ID:", kind="text"),
137
- space_id = mo.ui.text(placeholder="Add your watsonx.ai space_id...", label="Space_ID:", kind="text")
138
- ,)
139
- .form(show_clear_button=True, bordered=False)
140
- )
141
-
142
-
143
- # client_instantiation_form
144
- return client_instantiation_form, regions, wx_platform_url
145
-
146
-
147
- @app.cell
148
- def _(client_instantiation_form, mo):
149
- from ibm_watsonx_ai import APIClient, Credentials
150
-
151
- def setup_task_credentials(deployment_client):
152
- # Get existing task credentials
153
- existing_credentials = deployment_client.task_credentials.get_details()
154
-
155
- # Delete existing credentials if any
156
- if "resources" in existing_credentials and existing_credentials["resources"]:
157
- for cred in existing_credentials["resources"]:
158
- cred_id = deployment_client.task_credentials.get_id(cred)
159
- deployment_client.task_credentials.delete(cred_id)
160
-
161
- # Store new credentials
162
- return deployment_client.task_credentials.store()
163
-
164
- if client_instantiation_form.value:
165
- ### Instantiate the watsonx.ai client
166
- wx_credentials = Credentials(
167
- url=client_instantiation_form.value["wx_region"],
168
- api_key=client_instantiation_form.value["wx_api_key"]
169
- )
170
-
171
- # project_client = APIClient(credentials=wx_credentials, project_id=client_instantiation_form.value["project_id"])
172
- deployment_client = APIClient(credentials=wx_credentials, space_id=client_instantiation_form.value["space_id"])
173
-
174
- task_credentials_details = setup_task_credentials(deployment_client)
175
- else:
176
- # project_client = None
177
- deployment_client = None
178
- task_credentials_details = None
179
-
180
- template_variant = mo.ui.dropdown(["Base","Stream Files to IBM COS [Example]"], label="Code Template:", value="Base")
181
-
182
- if deployment_client is not None:
183
- client_callout_kind = "success"
184
- else:
185
- client_callout_kind = "neutral"
186
-
187
- client_callout = mo.callout(template_variant, kind=client_callout_kind)
188
-
189
- # client_callout
190
- return (
191
- APIClient,
192
- Credentials,
193
- client_callout,
194
- client_callout_kind,
195
- deployment_client,
196
- setup_task_credentials,
197
- task_credentials_details,
198
- template_variant,
199
- wx_credentials,
200
- )
201
-
202
-
203
- @app.cell
204
- def _(
205
- client_callout,
206
- client_instantiation_form,
207
- deploy_fnc,
208
- deployment_definition,
209
- fm,
210
- function_editor,
211
- hw_selection_table,
212
- mo,
213
- purge_tabs,
214
- sc_m,
215
- schema_editors,
216
- selection_table,
217
- upload_func,
218
- ):
219
- s1 = mo.md(f'''
220
- ###**Instantiate your watsonx.ai client:**
221
-
222
- 1. Select a region from the dropdown menu
223
-
224
- 2. Provide an IBM Cloud Apikey and watsonx.ai deployment space id
225
-
226
- 3. Once you submit, the area with the code template will turn green if successful
227
-
228
- 4. Select a base (provide baseline format) or example code function template
229
-
230
- ---
231
-
232
- {client_instantiation_form}
233
-
234
- ---
235
-
236
- {client_callout}
237
-
238
- ''')
239
-
240
- sc_tabs = mo.ui.tabs(
241
- {
242
- "Schema Option Selection": sc_m,
243
- "Schema Definition": mo.md(f"""
244
- ####**Edit the schema definitions you selected in the previous tab.**<br>
245
- {schema_editors}"""),
246
- }
247
- )
248
-
249
- s2 = mo.md(f'''###**Create your function from the template:**
250
-
251
- 1. Use the code editor window to create a function to deploy
252
- <br>
253
- The function must:
254
- <br>
255
- --- Include a payload and score element
256
- <br>
257
- --- Have the same function name in both the score = <name>() segment and the Function Name input field below
258
- <br>
259
- --- Additional details can be found here -> [watsonx.ai - Writing deployable Python functions
260
- ](https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/ml-deploy-py-function-write.html?utm_medium=Exinfluencer&utm_source=ibm_developer&utm_content=in_content_link&utm_term=10006555&utm_id=blogs_awb-tekton-optimizations-for-kubeflow-pipelines-2-0&context=wx&audience=wdp)
261
-
262
- 3. Click submit, then proceed to select whether you wish to add:
263
- <br>
264
- --- An input schema (describing the format of the variables the function takes) **[Optional]**
265
- <br>
266
- --- An output schema (describing the format of the output results the function returns) **[Optional]**
267
- <br>
268
- --- An sample input example (showing an example of a mapping of the input and output schema to actual values.) **[Optional]**
269
-
270
- 4. Fill in the function name field **(must be exactly the same as in the function editor)**
271
-
272
- 5. Add a description and metadata tags **[Optional]**
273
-
274
- ---
275
-
276
- {function_editor}
277
-
278
- ---
279
-
280
- {sc_tabs}
281
-
282
- ---
283
-
284
- {fm}
285
-
286
- ''')
287
-
288
- s3 = mo.md(f'''
289
- ###**Review and Upload your function**
290
-
291
- 1. Review the function metadata specs JSON
292
-
293
- 2. Select a software specification if necessary (default for python functions is pre-selected), this is the runtime environment of python that your function will run in. Environments on watsonx.ai come pre-packaged with many different libraries, if necessary install new ones by adding them into the function as a `subprocess.check_output('pip install <package_name>', shell=True)` command.
294
-
295
- 3. Once your are satisfied, click the upload function button and wait for the response.
296
-
297
- > If you see no table of software specs, you haven't activated your watsonx.ai client.
298
-
299
- ---
300
-
301
- {selection_table}
302
-
303
- ---
304
-
305
- {upload_func}
306
-
307
- ''')
308
-
309
- s4 = mo.md(f'''
310
- ###**Deploy your function:**
311
-
312
- 1. Select a hardware specification (vCPUs/GB) that you want your function deployed on
313
- <br>
314
- --- XXS and XS cost the same (0.5 CUH per hour, so XS is the better option
315
- <br>
316
- --- Select larger instances for more resource intensive tasks or runnable jobs
317
-
318
- 2. Select the type of deployment:
319
- <br>
320
- --- Function (Online) for always-on endpoints - Always available and low latency, but consume resources continuously for every hour they are deployed.
321
- <br>
322
- --- Batch (Batch) for runnable jobs - Only consume resources during job runs, but aren't as flexible to deploy.
323
-
324
- 3. If you've selected Function, pick a completely unique (globally, not just your account) deployment serving name that will be in the endpoint url.
325
-
326
- 4. Once your are satisfied, click the deploy function button and wait for the response.
327
-
328
- ---
329
-
330
- {hw_selection_table}
331
-
332
- ---
333
-
334
- {deployment_definition}
335
-
336
- ---
337
-
338
- {deploy_fnc}
339
-
340
- ''')
341
-
342
- s5 = mo.md(f'''
343
- ###**Helper Purge Functions:**
344
-
345
- These functions help you retrieve, select and delete deployments, data assets or repository assets (functions, models, etc.) that you have in the deployment space. This is meant to support fast cleanup.
346
-
347
- Select the tab based on what you want to delete, then click each of the buttons one by one after the previous gives a response.
348
-
349
- ---
350
-
351
- {purge_tabs}
352
-
353
- ''')
354
-
355
- sections = mo.accordion(
356
- {
357
- "Section 1: **watsonx.ai Credentials**": s1,
358
- "Section 2: **Function Creation**": s2,
359
- "Section 3: **Function Upload**": s3,
360
- "Section 4: **Function Deployment**": s4,
361
- "Section 5: **Helper Functions**": s5,
362
- },
363
- multiple=True
364
- )
365
-
366
- sections
367
- return s1, s2, s3, s4, s5, sc_tabs, sections
368
-
369
-
370
- @app.cell
371
- def _(mo, template_variant):
372
- # Template for WatsonX.ai deployable function
373
- if template_variant.value == "Stream Files to IBM COS [Example]":
374
- with open("stream_files_to_cos.py", "r") as file:
375
- template = file.read()
376
- else:
377
- template = '''def your_function_name():
378
-
379
- import subprocess
380
- subprocess.check_output('pip install gensim', shell=True)
381
- import gensim
382
-
383
- def score(input_data):
384
- message_from_input_payload = payload.get("input_data")[0].get("values")[0][0]
385
- response_message = "Received message - {0}".format(message_from_input_payload)
386
-
387
- # Score using the pre-defined model
388
- score_response = {
389
- 'predictions': [{'fields': ['Response_message_field', 'installed_lib_version'],
390
- 'values': [[response_message, gensim.__version__]]
391
- }]
392
- }
393
- return score_response
394
-
395
- return score
396
-
397
- score = your_function_name()
398
- '''
399
-
400
- function_editor = (
401
- mo.md('''
402
- #### **Create your function by editing the template:**
403
-
404
- {editor}
405
-
406
- ''')
407
- .batch(
408
- editor = mo.ui.code_editor(value=template, language="python", min_height=50)
409
- )
410
- .form(show_clear_button=True, bordered=False)
411
- )
412
-
413
- # function_editor
414
- return file, function_editor, template
415
-
416
-
417
- @app.cell
418
- def _(function_editor, mo, os):
419
- if function_editor.value:
420
- # Get the edited code from the function editor
421
- code = function_editor.value['editor']
422
- # Create a namespace to execute the code in
423
- namespace = {}
424
- # Execute the code
425
- exec(code, namespace)
426
-
427
- # Find the first function defined in the namespace
428
- function_name = None
429
- for name, obj in namespace.items():
430
- if callable(obj) and name != "__builtins__":
431
- function_name = name
432
- break
433
-
434
- if function_name:
435
- # Instantiate the deployable function
436
- deployable_function = namespace[function_name]
437
- # Now deployable_function contains the score function
438
- mo.md(f"Created deployable function from '{function_name}'")
439
- # Create the directory if it doesn't exist
440
- save_dir = "/tmp/notebook_functions"
441
- os.makedirs(save_dir, exist_ok=True)
442
- # Save the function code to a file
443
- file_path = os.path.join(save_dir, f"{function_name}.py")
444
- with open(file_path, "w") as f:
445
- f.write(code)
446
- else:
447
- mo.md("No function found in the editor code")
448
- return (
449
- code,
450
- deployable_function,
451
- f,
452
- file_path,
453
- function_name,
454
- name,
455
- namespace,
456
- obj,
457
- save_dir,
458
- )
459
-
460
-
461
- @app.cell
462
- def _(deployment_client, mo, pd):
463
- if deployment_client:
464
- supported_specs = deployment_client.software_specifications.list()[
465
- deployment_client.software_specifications.list()['STATE'] == 'supported'
466
- ]
467
-
468
- # Reset the index to start from 0
469
- supported_specs = supported_specs.reset_index(drop=True)
470
-
471
- # Create a mapping dictionary for framework names based on software specifications
472
- framework_mapping = {
473
- "tensorflow_rt24.1-py3.11": "TensorFlow",
474
- "pytorch-onnx_rt24.1-py3.11": "PyTorch",
475
- "onnxruntime_opset_19": "ONNX or ONNXRuntime",
476
- "runtime-24.1-py3.11": "AI Services/Python Functions/Python Scripts",
477
- "autoai-ts_rt24.1-py3.11": "AutoAI",
478
- "autoai-kb_rt24.1-py3.11": "AutoAI",
479
- "runtime-24.1-py3.11-cuda": "CUDA-enabled (GPU) Python Runtime",
480
- "runtime-24.1-r4.3": "R Runtime 4.3",
481
- "spark-mllib_3.4": "Apache Spark 3.4",
482
- "autoai-rag_rt24.1-py3.11": "AutoAI RAG"
483
- }
484
-
485
- # Define the preferred order for items to appear at the top
486
- preferred_order = [
487
- "runtime-24.1-py3.11",
488
- "runtime-24.1-py3.11-cuda",
489
- "runtime-24.1-r4.3",
490
- "ai-service-v5-software-specification",
491
- "autoai-rag_rt24.1-py3.11",
492
- "autoai-ts_rt24.1-py3.11",
493
- "autoai-kb_rt24.1-py3.11",
494
- "tensorflow_rt24.1-py3.11",
495
- "pytorch-onnx_rt24.1-py3.11",
496
- "onnxruntime_opset_19",
497
- "spark-mllib_3.4",
498
- ]
499
-
500
- # Create a new column for sorting
501
- supported_specs['SORT_ORDER'] = supported_specs['NAME'].apply(
502
- lambda x: preferred_order.index(x) if x in preferred_order else len(preferred_order)
503
- )
504
-
505
- # Sort the DataFrame by the new column
506
- supported_specs = supported_specs.sort_values('SORT_ORDER').reset_index(drop=True)
507
-
508
- # Drop the sorting column as it's no longer needed
509
- supported_specs = supported_specs.drop(columns=['SORT_ORDER'])
510
-
511
- # Drop the REPLACEMENT column if it exists and add NOTES column
512
- if 'REPLACEMENT' in supported_specs.columns:
513
- supported_specs = supported_specs.drop(columns=['REPLACEMENT'])
514
-
515
- # Add NOTES column with framework information
516
- supported_specs['NOTES'] = supported_specs['NAME'].map(framework_mapping).fillna("Other")
517
-
518
- # Create a table with single-row selection
519
- selection_table = mo.ui.table(
520
- supported_specs,
521
- selection="single", # Only allow selecting one row
522
- label="#### **Select a supported software_spec runtime for your function asset** (For Python Functions select - *'runtime-24.1-py3.11'* ):",
523
- initial_selection=[0], # Now selecting the first row, which should be runtime-24.1-py3.11
524
- page_size=6
525
- )
526
- else:
527
- sel_df = pd.DataFrame(
528
- data=[["ID", "Activate deployment_client."]],
529
- columns=["ID", "VALUE"]
530
- )
531
-
532
- selection_table = mo.ui.table(
533
- sel_df,
534
- selection="single", # Only allow selecting one row
535
- label="You haven't activated the Deployment_Client",
536
- initial_selection=[0]
537
- )
538
-
539
- # # Display the table
540
- # mo.md(f"""---
541
- # <br>
542
- # <br>
543
- # {selection_table}
544
- # <br>
545
- # <br>
546
- # ---
547
- # <br>
548
- # <br>
549
- # """)
550
- return (
551
- framework_mapping,
552
- preferred_order,
553
- sel_df,
554
- selection_table,
555
- supported_specs,
556
- )
557
-
558
-
559
- @app.cell
560
- def _(mo):
561
- input_schema_checkbox = mo.ui.checkbox(label="Add input schema (optional)")
562
- output_schema_checkbox = mo.ui.checkbox(label="Add output schema (optional)")
563
- sample_input_checkbox = mo.ui.checkbox(label="Add sample input example (optional)")
564
- return input_schema_checkbox, output_schema_checkbox, sample_input_checkbox
565
-
566
-
567
- @app.cell
568
- def _(
569
- input_schema_checkbox,
570
- mo,
571
- output_schema_checkbox,
572
- sample_input_checkbox,
573
- selection_table,
574
- template_variant,
575
- ):
576
- if selection_table.value['ID'].iloc[0]:
577
- # Create the input fields
578
- if template_variant.value == "Stream Files to IBM COS [Example]":
579
- fnc_nm = "stream_file_to_cos"
580
- else:
581
- fnc_nm = "your_function_name"
582
-
583
- uploaded_function_name = mo.ui.text(placeholder="<Must be the same as the name in editor>", label="Function Name:", kind="text", value=f"{fnc_nm}", full_width=False)
584
- tags_editor = mo.ui.array(
585
- [mo.ui.text(placeholder="Metadata Tags..."), mo.ui.text(), mo.ui.text()],
586
- label="Optional Metadata Tags"
587
- )
588
- software_spec = selection_table.value['ID'].iloc[0]
589
-
590
- description_input = mo.ui.text_area(
591
- placeholder="Write a description for your function...)",
592
- label="Description",
593
- max_length=256,
594
- rows=5,
595
- full_width=True
596
- )
597
-
598
-
599
- func_metadata=mo.hstack([
600
- description_input,
601
- mo.hstack([
602
- uploaded_function_name,
603
- tags_editor,
604
- ], justify="start", gap=1, align="start", wrap=True)
605
- ],
606
- widths=[0.6,0.4],
607
- gap=2.75
608
- )
609
-
610
- schema_metadata=mo.hstack([
611
- input_schema_checkbox,
612
- output_schema_checkbox,
613
- sample_input_checkbox
614
- ],
615
- justify="center", gap=1, align="center", wrap=True
616
- )
617
-
618
- # Display the metadata inputs
619
- # mo.vstack([
620
- # func_metadata,
621
- # mo.md("**Make sure to click the checkboxes before filling in descriptions and tags or they will reset.**"),
622
- # schema_metadata
623
- # ],
624
- # align="center",
625
- # gap=2
626
- # )
627
- fm = mo.vstack([
628
- func_metadata,
629
- ],
630
- align="center",
631
- gap=2
632
- )
633
- sc_m = mo.vstack([
634
- schema_metadata,
635
- mo.md("**Make sure to select the checkbox options before filling in descriptions and tags or they will reset.**")
636
- ],
637
- align="center",
638
- gap=2
639
- )
640
- return (
641
- description_input,
642
- fm,
643
- fnc_nm,
644
- func_metadata,
645
- sc_m,
646
- schema_metadata,
647
- software_spec,
648
- tags_editor,
649
- uploaded_function_name,
650
- )
651
-
652
-
653
- @app.cell
654
- def _(json, mo, template_variant):
655
- if template_variant.value == "Stream Files to IBM COS [Example]":
656
- from cos_stream_schema_examples import input_schema, output_schema, sample_input
657
- else:
658
- input_schema = [
659
- {
660
- 'id': '1',
661
- 'type': 'struct',
662
- 'fields': [
663
- {
664
- 'name': '<variable name 1>',
665
- 'type': 'string',
666
- 'nullable': False,
667
- 'metadata': {}
668
- },
669
- {
670
- 'name': '<variable name 2>',
671
- 'type': 'string',
672
- 'nullable': False,
673
- 'metadata': {}
674
- }
675
- ]
676
- }
677
- ]
678
-
679
- output_schema = [
680
- {
681
- 'id': '1',
682
- 'type': 'struct',
683
- 'fields': [
684
- {
685
- 'name': '<output return name>',
686
- 'type': 'string',
687
- 'nullable': False,
688
- 'metadata': {}
689
- }
690
- ]
691
- }
692
- ]
693
-
694
- sample_input = {
695
- 'input_data': [
696
- {
697
- 'fields': ['<variable name 1>', '<variable name 2>'],
698
- 'values': [
699
- ['<sample input value for variable 1>', '<sample input value for variable 2>']
700
- ]
701
- }
702
- ]
703
- }
704
-
705
-
706
- input_schema_editor = mo.ui.code_editor(value=json.dumps(input_schema, indent=4), language="python", min_height=25)
707
- output_schema_editor = mo.ui.code_editor(value=json.dumps(output_schema, indent=4), language="python", min_height=25)
708
- sample_input_editor = mo.ui.code_editor(value=json.dumps(sample_input, indent=4), language="python", min_height=25)
709
-
710
- schema_editors = mo.accordion(
711
- {
712
- """**Input Schema Metadata Editor**""": input_schema_editor,
713
- """**Output Schema Metadata Editor**""": output_schema_editor,
714
- """**Sample Input Metadata Editor**""": sample_input_editor
715
- }, multiple=True
716
- )
717
-
718
- # schema_editors
719
- return (
720
- input_schema,
721
- input_schema_editor,
722
- output_schema,
723
- output_schema_editor,
724
- sample_input,
725
- sample_input_editor,
726
- schema_editors,
727
- )
728
-
729
-
730
- @app.cell
731
- def _(
732
- ast,
733
- deployment_client,
734
- description_input,
735
- function_editor,
736
- input_schema_checkbox,
737
- input_schema_editor,
738
- json,
739
- mo,
740
- os,
741
- output_schema_checkbox,
742
- output_schema_editor,
743
- sample_input_checkbox,
744
- sample_input_editor,
745
- selection_table,
746
- software_spec,
747
- tags_editor,
748
- uploaded_function_name,
749
- ):
750
- get_upload_status, set_upload_status = mo.state("No uploads yet")
751
-
752
- function_meta = {}
753
-
754
- if selection_table.value['ID'].iloc[0] and deployment_client is not None:
755
- # Start with the base required fields
756
- function_meta = {
757
- deployment_client.repository.FunctionMetaNames.NAME: f"{uploaded_function_name.value}" or "your_function_name",
758
- deployment_client.repository.FunctionMetaNames.SOFTWARE_SPEC_ID: software_spec or "45f12dfe-aa78-5b8d-9f38-0ee223c47309"
759
- }
760
-
761
- # Add optional fields if they exist
762
- if tags_editor.value:
763
- # Filter out empty strings from the tags list
764
- filtered_tags = [tag for tag in tags_editor.value if tag and tag.strip()]
765
- if filtered_tags: # Only add if there are non-empty tags
766
- function_meta[deployment_client.repository.FunctionMetaNames.TAGS] = filtered_tags
767
-
768
-
769
- if description_input.value:
770
- function_meta[deployment_client.repository.FunctionMetaNames.DESCRIPTION] = description_input.value
771
-
772
- # Add input schema if checkbox is checked
773
- if input_schema_checkbox.value:
774
- try:
775
- function_meta[deployment_client.repository.FunctionMetaNames.INPUT_DATA_SCHEMAS] = json.loads(input_schema_editor.value)
776
- except json.JSONDecodeError:
777
- # If JSON parsing fails, try Python literal evaluation as fallback
778
- function_meta[deployment_client.repository.FunctionMetaNames.INPUT_DATA_SCHEMAS] = ast.literal_eval(input_schema_editor.value)
779
-
780
- # Add output schema if checkbox is checked
781
- if output_schema_checkbox.value:
782
- try:
783
- function_meta[deployment_client.repository.FunctionMetaNames.OUTPUT_DATA_SCHEMAS] = json.loads(output_schema_editor.value)
784
- except json.JSONDecodeError:
785
- # If JSON parsing fails, try Python literal evaluation as fallback
786
- function_meta[deployment_client.repository.FunctionMetaNames.OUTPUT_DATA_SCHEMAS] = ast.literal_eval(output_schema_editor.value)
787
-
788
- # Add sample input if checkbox is checked
789
- if sample_input_checkbox.value:
790
- try:
791
- function_meta[deployment_client.repository.FunctionMetaNames.SAMPLE_SCORING_INPUT] = json.loads(sample_input_editor.value)
792
- except json.JSONDecodeError:
793
- # If JSON parsing fails, try Python literal evaluation as fallback
794
- function_meta[deployment_client.repository.FunctionMetaNames.SAMPLE_SCORING_INPUT] = ast.literal_eval(sample_input_editor.value)
795
-
796
- def upload_function(function_meta, use_function_object=True):
797
- """
798
- Uploads a Python function to watsonx.ai as a deployable asset.
799
- Parameters:
800
- function_meta (dict): Metadata for the function
801
- use_function_object (bool): Whether to use function object (True) or file path (False)
802
- Returns:
803
- dict: Details of the uploaded function
804
- """
805
- # Store the original working directory
806
- original_dir = os.getcwd()
807
-
808
- try:
809
- # Create temp file from the code in the editor
810
- code_to_deploy = function_editor.value['editor']
811
- # This function is defined elsewhere in the notebook
812
- func_name = uploaded_function_name.value or "your_function_name"
813
- # Ensure function_meta has the correct function name
814
- function_meta[deployment_client.repository.FunctionMetaNames.NAME] = func_name
815
- # Save the file locally first
816
- save_dir = "/tmp/notebook_functions"
817
- os.makedirs(save_dir, exist_ok=True)
818
- file_path = f"{save_dir}/{func_name}.py"
819
- with open(file_path, "w", encoding="utf-8") as f:
820
- f.write(code_to_deploy)
821
-
822
- if use_function_object:
823
- # Import the function from the file
824
- import sys
825
- import importlib.util
826
- # Add the directory to Python's path
827
- sys.path.append(save_dir)
828
- # Import the module
829
- spec = importlib.util.spec_from_file_location(func_name, file_path)
830
- module = importlib.util.module_from_spec(spec)
831
- spec.loader.exec_module(module)
832
- # Get the function object
833
- function_object = getattr(module, func_name)
834
-
835
- # Change to /tmp directory before calling IBM Watson SDK functions
836
- os.chdir('/tmp')
837
-
838
- # Upload the function object
839
- mo.md(f"Uploading function object: {func_name}")
840
- func_details = deployment_client.repository.store_function(function_object, function_meta)
841
- else:
842
- # Change to /tmp directory before calling IBM Watson SDK functions
843
- os.chdir('/tmp')
844
-
845
- # Upload using the file path approach
846
- mo.md(f"Uploading function from file: {file_path}")
847
- func_details = deployment_client.repository.store_function(file_path, function_meta)
848
-
849
- set_upload_status(f"Latest Upload - id - {func_details['metadata']['id']}")
850
- return func_details
851
- except Exception as e:
852
- set_upload_status(f"Error uploading function: {str(e)}")
853
- mo.md(f"Detailed error: {str(e)}")
854
- raise
855
- finally:
856
- # Always change back to the original directory, even if an exception occurs
857
- os.chdir(original_dir)
858
-
859
- upload_status = mo.state("No uploads yet")
860
-
861
- upload_button = mo.ui.button(
862
- label="Upload Function",
863
- on_click=lambda _: upload_function(function_meta, use_function_object=True),
864
- kind="success",
865
- tooltip="Click to upload function to watsonx.ai"
866
- )
867
-
868
- # function_meta
869
- return (
870
- filtered_tags,
871
- function_meta,
872
- get_upload_status,
873
- set_upload_status,
874
- upload_button,
875
- upload_function,
876
- upload_status,
877
- )
878
-
879
-
880
- @app.cell
881
- def _(get_upload_status, mo, upload_button):
882
- # Upload your function
883
- if upload_button.value:
884
- try:
885
- upload_result = upload_button.value
886
- artifact_id = upload_result['metadata']['id']
887
- except Exception as e:
888
- mo.md(f"Error: {str(e)}")
889
-
890
- upload_func = mo.vstack([
891
- upload_button,
892
- mo.md(f"**Status:** {get_upload_status()}")
893
- ], justify="space-around", align="center")
894
- return artifact_id, upload_func, upload_result
895
-
896
-
897
- @app.cell
898
- def _(deployment_client, mo, pd, upload_button, uuid):
899
- def reorder_hardware_specifications(df):
900
- """
901
- Reorders a hardware specifications dataframe by type and size of environment
902
- without hardcoding specific hardware types.
903
-
904
- Parameters:
905
- df (pandas.DataFrame): The hardware specifications dataframe to reorder
906
-
907
- Returns:
908
- pandas.DataFrame: Reordered dataframe with reset index
909
- """
910
- # Create a copy to avoid modifying the original dataframe
911
- result_df = df.copy()
912
-
913
- # Define a function to extract the base type and size
914
- def get_sort_key(name):
915
- # Create a custom ordering list
916
- custom_order = [
917
- "XXS", "XS", "S", "M", "L", "XL",
918
- "XS-Spark", "S-Spark", "M-Spark", "L-Spark", "XL-Spark",
919
- "K80", "K80x2", "K80x4",
920
- "V100", "V100x2",
921
- "WXaaS-XS", "WXaaS-S", "WXaaS-M", "WXaaS-L", "WXaaS-XL",
922
- "Default Spark", "Notebook Default Spark", "ML"
923
- ]
924
-
925
- # If name is in the custom order list, use its index
926
- if name in custom_order:
927
- return (0, custom_order.index(name))
928
-
929
- # For any name not in the custom order, put it at the end
930
- return (1, name)
931
-
932
- # Add a temporary column for sorting
933
- result_df['sort_key'] = result_df['NAME'].apply(get_sort_key)
934
-
935
- # Sort the dataframe and drop the temporary column
936
- result_df = result_df.sort_values('sort_key').drop('sort_key', axis=1)
937
-
938
- # Reset the index
939
- result_df = result_df.reset_index(drop=True)
940
-
941
- return result_df
942
-
943
- if deployment_client and upload_button.value:
944
-
945
- hardware_specs = deployment_client.hardware_specifications.list()
946
- hardware_specs_df = reorder_hardware_specifications(hardware_specs)
947
-
948
- # Create a table with single-row selection
949
- hw_selection_table = mo.ui.table(
950
- hardware_specs_df,
951
- selection="single", # Only allow selecting one row
952
- label="#### **Select a supported hardware_specification for your deployment** *(Default: 'XS' - 1vCPU_4GB Ram)*",
953
- initial_selection=[1],
954
- page_size=6,
955
- wrapped_columns=['DESCRIPTION']
956
- )
957
-
958
- deployment_type = mo.ui.radio(
959
- options={"Function":"Online (Function Endpoint)","Runnable Job":"Batch (Runnable Jobs)"}, value="Function", label="Select the Type of Deployment:", inline=True
960
- )
961
- uuid_suffix = str(uuid.uuid4())[:4]
962
-
963
- deployment_name = mo.ui.text(value=f"deployed_func_{uuid_suffix}", label="Deployment Name:", placeholder="<Must be completely unique>")
964
- else:
965
- hw_df = pd.DataFrame(
966
- data=[["ID", "Activate deployment_client."]],
967
- columns=["ID", "VALUE"]
968
- )
969
-
970
- hw_selection_table = mo.ui.table(
971
- hw_df,
972
- selection="single", # Only allow selecting one row
973
- label="You haven't activated the Deployment_Client",
974
- initial_selection=[0]
975
- )
976
-
977
-
978
- # mo.md(f"""
979
- # <br>
980
- # <br>
981
- # {upload_func}
982
- # <br>
983
- # <br>
984
- # ---
985
- # {hw_selection_table}
986
- # <br>
987
- # <br>
988
-
989
-
990
- # """)
991
- return (
992
- deployment_name,
993
- deployment_type,
994
- hardware_specs,
995
- hardware_specs_df,
996
- hw_df,
997
- hw_selection_table,
998
- reorder_hardware_specifications,
999
- uuid_suffix,
1000
- )
1001
-
1002
-
1003
- @app.cell
1004
- def _(
1005
- artifact_id,
1006
- deployment_client,
1007
- deployment_details,
1008
- deployment_name,
1009
- deployment_type,
1010
- hw_selection_table,
1011
- mo,
1012
- print,
1013
- upload_button,
1014
- ):
1015
- def deploy_function(artifact_id, deployment_type):
1016
- """
1017
- Deploys a function asset to watsonx.ai.
1018
-
1019
- Parameters:
1020
- artifact_id (str): ID of the function artifact to deploy
1021
- deployment_type (object): Type of deployment (online or batch)
1022
-
1023
- Returns:
1024
- dict: Details of the deployed function
1025
- """
1026
- if not artifact_id:
1027
- print("Error: No artifact ID provided. Please upload a function first.")
1028
- return None
1029
-
1030
- if deployment_type.value == "Online (Function Endpoint)": # Changed from "Online (Function Endpoint)"
1031
- deployment_props = {
1032
- deployment_client.deployments.ConfigurationMetaNames.NAME: deployment_name.value,
1033
- deployment_client.deployments.ConfigurationMetaNames.ONLINE: {},
1034
- deployment_client.deployments.ConfigurationMetaNames.HARDWARE_SPEC: {"id": selected_hw_config},
1035
- deployment_client.deployments.ConfigurationMetaNames.SERVING_NAME: deployment_name.value,
1036
- }
1037
- else: # "Runnable Job" instead of "Batch (Runnable Jobs)"
1038
- deployment_props = {
1039
- deployment_client.deployments.ConfigurationMetaNames.NAME: deployment_name.value,
1040
- deployment_client.deployments.ConfigurationMetaNames.BATCH: {},
1041
- deployment_client.deployments.ConfigurationMetaNames.HARDWARE_SPEC: {"id": selected_hw_config},
1042
- # batch does not use serving names
1043
- }
1044
-
1045
- try:
1046
- print(deployment_props)
1047
- # First, get the asset details to confirm it exists
1048
- asset_details = deployment_client.repository.get_details(artifact_id)
1049
- print(f"Asset found: {asset_details['metadata']['name']} with ID: {asset_details['metadata']['id']}")
1050
-
1051
- # Create the deployment
1052
- deployed_function = deployment_client.deployments.create(artifact_id, deployment_props)
1053
- print(f"Creating deployment from Asset: {artifact_id} with deployment properties {str(deployment_props)}")
1054
- return deployed_function
1055
- except Exception as e:
1056
- print(f"Deployment error: {str(e)}")
1057
- return None
1058
-
1059
- def get_deployment_id(deployed_function):
1060
- deployment_id = deployment_client.deployments.get_uid(deployment_details)
1061
- return deployment_id
1062
-
1063
- def get_deployment_info(deployment_id):
1064
- deployment_info = deployment_client.deployments.get_details(deployment_id)
1065
- return deployment_info
1066
-
1067
- deployment_status = mo.state("No deployments yet")
1068
-
1069
- if hw_selection_table.value['ID'].iloc[0]:
1070
- selected_hw_config = hw_selection_table.value['ID'].iloc[0]
1071
-
1072
- deploy_button = mo.ui.button(
1073
- label="Deploy Function",
1074
- on_click=lambda _: deploy_function(artifact_id, deployment_type),
1075
- kind="success",
1076
- tooltip="Click to deploy function to watsonx.ai"
1077
- )
1078
-
1079
- if deployment_client and upload_button.value:
1080
- deployment_definition = mo.hstack([
1081
- deployment_type,
1082
- deployment_name
1083
- ], justify="space-around")
1084
- else:
1085
- deployment_definition = mo.hstack([
1086
- "No Deployment Type Selected",
1087
- "No Deployment Name Provided"
1088
- ], justify="space-around")
1089
-
1090
- # deployment_definition
1091
- return (
1092
- deploy_button,
1093
- deploy_function,
1094
- deployment_definition,
1095
- deployment_status,
1096
- get_deployment_id,
1097
- get_deployment_info,
1098
- selected_hw_config,
1099
- )
1100
-
1101
-
1102
- @app.cell
1103
- def _(deploy_button, deployment_definition, mo):
1104
- _ = deployment_definition
1105
-
1106
- deploy_fnc = mo.vstack([
1107
- deploy_button,
1108
- deploy_button.value
1109
- ], justify="space-around", align="center")
1110
-
1111
- # mo.md(f"""
1112
- # {deployment_definition}
1113
- # <br>
1114
- # <br>
1115
- # {deploy_fnc}
1116
-
1117
- # ---
1118
- # """)
1119
- return (deploy_fnc,)
1120
-
1121
-
1122
- @app.cell(hide_code=True)
1123
- def _(deployment_client, mo):
1124
- ### Functions to List , Get ID's as a list and Purge of Assets
1125
-
1126
- def get_deployment_list():
1127
- dep_df = deployment_client.deployments.list()
1128
- # deployment_df = mo.ui.table(dep_df, initial_selection=[0])
1129
- return pd.DataFrame(dep_df)
1130
-
1131
- def get_deployment_ids():
1132
- if deployments_dataframe is not []:
1133
- df = deployments_dataframe.value
1134
- dep_list = df['ID'].tolist()
1135
- else:
1136
- dep_list = []
1137
- return dep_list
1138
-
1139
- def get_data_assets_list():
1140
- d_assets_df = deployment_client.data_assets.list()
1141
- # data_assets_df = mo.ui.table(d_assets_df, initial_selection=[0])
1142
- return pd.DataFrame(d_assets_df)
1143
-
1144
- def get_data_asset_ids():
1145
- if repository_dataframe is not []:
1146
- df = data_assets_dataframe.value
1147
- data_asset_list = df['ASSET_ID'].tolist()
1148
- else:
1149
- data_asset_list = []
1150
- return data_asset_list
1151
-
1152
- ### List Repository Assets, Get ID's as a list and Purge Repository Assets (AI Services, Functions, Models, etc.)
1153
- def get_repository_list():
1154
- rep_df = deployment_client.repository.list()
1155
- # repository_df = mo.ui.table(rep_df, initial_selection=[0])
1156
- return pd.DataFrame(rep_df)
1157
-
1158
- def get_repository_ids():
1159
- if repository_dataframe is not []:
1160
- df = repository_dataframe.value
1161
- repository_list = df['ID'].tolist()
1162
- else:
1163
- repository_list = []
1164
- return repository_list
1165
-
1166
- def delete_with_progress(ids_list, delete_function, item_type="items"):
1167
- """
1168
- Generic wrapper that adds a progress bar to any deletion function
1169
-
1170
- Parameters:
1171
- ids_list: List of IDs to delete
1172
- delete_function: Function that deletes a single ID
1173
- item_type: String describing what's being deleted (for display)
1174
- """
1175
- with mo.status.progress_bar(
1176
- total=len(ids_list) or 1,
1177
- title=f"Purging {item_type}",
1178
- subtitle=f"Deleting {item_type}...",
1179
- completion_title="Purge Complete",
1180
- completion_subtitle=f"Successfully deleted {len(ids_list)} {item_type}"
1181
- ) as progress:
1182
- for item_id in ids_list:
1183
- delete_function(item_id)
1184
- progress.update(increment=1)
1185
- return f"Deleted {len(ids_list)} {item_type} successfully"
1186
-
1187
- # Use with existing deletion functions
1188
- def delete_deployments(deployment_ids):
1189
- return delete_with_progress(
1190
- deployment_ids,
1191
- lambda id: deployment_client.deployments.delete(id),
1192
- "deployments"
1193
- )
1194
-
1195
- def delete_data_assets(data_asset_ids):
1196
- return delete_with_progress(
1197
- data_asset_ids,
1198
- lambda id: deployment_client.data_assets.delete(id),
1199
- "data assets"
1200
- )
1201
-
1202
- def delete_repository_items(repository_ids):
1203
- return delete_with_progress(
1204
- repository_ids,
1205
- lambda id: deployment_client.repository.delete(id),
1206
- "repository items"
1207
- )
1208
- return (
1209
- delete_data_assets,
1210
- delete_deployments,
1211
- delete_repository_items,
1212
- delete_with_progress,
1213
- get_data_asset_ids,
1214
- get_data_assets_list,
1215
- get_deployment_ids,
1216
- get_deployment_list,
1217
- get_repository_ids,
1218
- get_repository_list,
1219
- )
1220
-
1221
- @app.cell(hide_code=True)
1222
- def _(
1223
- delete_data_assets,
1224
- delete_deployments,
1225
- delete_repository_items,
1226
- get_data_asset_ids,
1227
- get_data_assets_list,
1228
- get_deployment_ids,
1229
- get_deployment_list,
1230
- get_repository_ids,
1231
- get_repository_list,
1232
- mo,
1233
- ):
1234
- ### Temporary Function Purge - Assets
1235
- get_data_assets_button = mo.ui.button(
1236
- label="Get Data Assets Dataframe",
1237
- on_click=lambda _: get_data_assets_list(),
1238
- kind="neutral",
1239
- )
1240
-
1241
- get_data_asset_id_list = mo.ui.button(
1242
- label="Turn Dataframe into List of IDs",
1243
- on_click=lambda _: get_data_asset_ids(),
1244
- # on_click=lambda _: get_data_asset_ids(data_assets_dataframe.value),
1245
- kind="neutral",
1246
- )
1247
-
1248
- purge_data_assets = mo.ui.button(
1249
- label="Purge Data Assets",
1250
- on_click=lambda _: delete_data_assets(get_data_asset_id_list.value),
1251
- kind="danger",
1252
- )
1253
-
1254
- ### Temporary Function Purge - Deployments
1255
- get_deployments_button = mo.ui.button(
1256
- label="Get Deployments Dataframe",
1257
- on_click=lambda _: get_deployment_list(),
1258
- kind="neutral",
1259
- )
1260
-
1261
- get_deployment_id_list = mo.ui.button(
1262
- label="Turn Dataframe into List of IDs",
1263
- on_click=lambda _: get_deployment_ids(),
1264
- # on_click=lambda _: get_deployment_ids(deployments_dataframe.value),
1265
- kind="neutral",
1266
- )
1267
-
1268
- purge_deployments = mo.ui.button(
1269
- label="Purge Deployments",
1270
- on_click=lambda _: delete_deployments(get_deployment_id_list.value),
1271
- kind="danger",
1272
- )
1273
-
1274
- ### Repository Items Purge
1275
- get_repository_button = mo.ui.button(
1276
- label="Get Repository Dataframe",
1277
- on_click=lambda _: get_repository_list(),
1278
- kind="neutral",
1279
- )
1280
-
1281
- get_repository_id_list = mo.ui.button(
1282
- label="Turn Dataframe into List of IDs",
1283
- on_click=lambda _: get_repository_ids(),
1284
- # on_click=lambda _: get_repository_ids(repository_dataframe.value),
1285
- kind="neutral",
1286
- )
1287
-
1288
- purge_repository = mo.ui.button(
1289
- label="Purge Repository Items",
1290
- on_click=lambda _: delete_repository_items(get_repository_id_list.value),
1291
- kind="danger",
1292
- )
1293
- return (
1294
- get_data_asset_id_list,
1295
- get_data_assets_button,
1296
- get_deployment_id_list,
1297
- get_deployments_button,
1298
- get_repository_button,
1299
- get_repository_id_list,
1300
- purge_data_assets,
1301
- purge_deployments,
1302
- purge_repository,
1303
- )
1304
-
1305
-
1306
-
1307
- @app.cell
1308
- def _(get_deployment_id_list, get_deployments_button, mo, purge_deployments):
1309
-
1310
- deployments_purge_stack = mo.hstack([get_deployments_button, get_deployment_id_list, purge_deployments])
1311
- deployments_purge_stack_results = mo.vstack([deployments_dataframe, get_deployment_id_list.value, purge_deployments.value])
1312
-
1313
- deployments_purge_tab = mo.vstack([deployments_purge_stack, deployments_purge_stack_results])
1314
-
1315
- return (
1316
- deployments_purge_stack,
1317
- deployments_purge_stack_results,
1318
- deployments_purge_tab,
1319
- )
1320
-
1321
-
1322
- @app.cell
1323
- def _(get_repository_button, get_repository_id_list, mo, purge_repository):
1324
-
1325
- repository_purge_stack = mo.hstack([get_repository_button, get_repository_id_list, purge_repository])
1326
- repository_purge_stack_results = mo.vstack([repository_dataframe, get_repository_id_list.value, purge_repository.value])
1327
-
1328
- repository_purge_tab = mo.vstack([repository_purge_stack, repository_purge_stack_results])
1329
- return (
1330
- repository_purge_stack,
1331
- repository_purge_stack_results,
1332
- repository_purge_tab,
1333
- )
1334
-
1335
-
1336
- @app.cell
1337
- def _(get_data_asset_id_list, get_data_assets_button, mo, purge_data_assets):
1338
-
1339
- data_assets_purge_stack = mo.hstack([get_data_assets_button, get_data_asset_id_list, purge_data_assets])
1340
- data_assets_purge_stack_results = mo.vstack([data_assets_dataframe, get_data_asset_id_list.value, purge_data_assets.value])
1341
-
1342
- data_assets_purge_tab = mo.vstack([data_assets_purge_stack, data_assets_purge_stack_results])
1343
- return (
1344
- data_assets_purge_stack,
1345
- data_assets_purge_stack_results,
1346
- data_assets_purge_tab,
1347
- )
1348
-
1349
- @app.cell
1350
- def _(get_data_assets_button, get_repository_button, mo, purge_data_assets):
1351
- deployments_dataframe = []
1352
- data_assets_dataframe = []
1353
- repository_dataframe = []
1354
-
1355
- # Only try to update if the buttons exist and have values
1356
- try:
1357
- if 'get_deployments_button' in globals() and get_deployments_button.value is not None:
1358
- deployments_dataframe = mo.ui.table(get_deployments_button.value, initial_selection=[0])
1359
- except (NameError, AttributeError):
1360
- pass
1361
-
1362
- try:
1363
- if 'get_data_assets_button' in globals() and get_data_assets_button.value is not None:
1364
- data_assets_dataframe = mo.ui.table(get_data_assets_button.value, initial_selection=[0])
1365
- except (NameError, AttributeError):
1366
- pass
1367
-
1368
- try:
1369
- if 'get_repository_button' in globals() and get_repository_button.value is not None:
1370
- repository_dataframe = mo.ui.table(get_repository_button.value, initial_selection=[0])
1371
- except (NameError, AttributeError):
1372
- pass
1373
-
1374
- return (
1375
- deployments_dataframe,
1376
- data_assets_dataframe,
1377
- repository_dataframe,
1378
- )
1379
-
1380
-
1381
-
1382
- @app.cell
1383
- def _(data_assets_purge_tab, deployments_purge_tab, mo, repository_purge_tab):
1384
- if deployments_purge_stack:
1385
- purge_tabs = mo.ui.tabs(
1386
- {"Purge Deployments": deployments_purge_tab, "Purge Repository Assets": repository_purge_tab,"Purge Data Assets": data_assets_purge_tab }, lazy=False
1387
- )
1388
- else:
1389
- purge_tabs = mo.md("**Instantiate the watsonx.ai Deployment Space Client.**")
1390
-
1391
- # asset_purge = mo.accordion(
1392
- # {
1393
- # """<br>
1394
- # #### **Supporting Cleanup Functionality, lists of different assets and purge them if needed** *(purges all detected)*
1395
- # <br>""": purge_tabs,
1396
- # }
1397
- # )
1398
-
1399
- # asset_purge
1400
- return (purge_tabs,)
1401
-
1402
- if __name__ == "__main__":
1403
- app.run()